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a b s t r a c t 

For light scattering computations, we propose to perform orientation averaging with spherical Fibonacci 

point sets. Furthermore, a compressive scheme is introduced to recover light scattering quantities for 

all orientations based on the compressive sensing theory that exploits the priori information that these 

scattering quantities are sparse in the spherical harmonic domain. The scheme solves convex optimization 

problem by minimizing the l 1 -norm of spherical harmonic expansion coefficients of light scattering quan- 

tities. Combining with spherical Fibonacci point sets, this compressive scheme can achieve highly accurate 

recovery results with fewer orientations than conventional orientation averaging schemes. It is indicated 

that the proposed compressive orientation averaging scheme with Fibonacci point sets is straightforward 

to implement and shows good performance in error convergence. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Particle orientation is of significant importance for investigating 

optical or aerodynamic properties of small particles. In numerical 

light scattering simulations [12] , it is often assumed that particle 

orientations are uniformly randomly distributed. But in some me- 

teorology studies [3] , nonuniform distributions of atmospheric par- 

ticle orientations are also used with the assumption that particles 

are horizontally oriented. For optical properties of small particles 

[11] , we can simulate light scattering with various computational 

methods [6,12,17] and integrate optical quantities over the parti- 

cle orientation domain. For example, random orientation averag- 

ing can be performed analytically with T-matrix method. For other 

fixed orientation methods like FDTD [17] or DDA [6] , various nu- 

merical integration schemes are needed to obtain mean properties. 

In FDTD or DDA, the CPU time is linearly proportional to the 

number of orientations, since we obtain one fixed orientation re- 

sult in each simulation. Hence, an efficient orientation averaging 

scheme would be beneficial to reduce the simulation time con- 

sumption. Based on this, Okada [14] studied a numerical orienta- 

tion averaging with Quasi-Monte Carlo (QMC) sampling point sets, 

which reduces the variance compared with classical Monte Carlo 

sampling point sets. Penttilä et al. [15] proposed another orienta- 

tion averaging scheme with Lebedev-Laikov cubature, which can 

be defined as point sets on the sphere with octahedral rotation 

symmetry. Recently, several studies [7,9,16] have shown that spher- 
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ical Fibonacci lattices are quite appropriate for numerical integra- 

tion on spherical domain. Here, we would like to introduce the use 

of spherical Fibonacci point sets for orientation averaging in light 

scattering computations. 

One of the most time-consuming step for light scattering sim- 

ulations is conducting the orientation averaging of the scatterer. 

All these numerical integration schemes above, however, have not 

taken the symmetry of objects into account. To take symmetry into 

consideration, we need to turn to spherical harmonics, of which 

scattering quantities on the unit sphere can be written as linear 

combinations. It would also be advantageous to evaluate the per- 

formance of the corresponding quadrature scheme by determining 

the ratio of the number of spherical harmonics expansions to the 

number of integration points. Given the quadrature scheme and 

points, it would be interesting to know how many terms of spher- 

ical harmonics expansions we can recover. This question is an- 

swered by the sampling theorem on the sphere [10] , which states 

that how exactly a band-limited spherical function can be recov- 

ered from samples. Furthermore, with the arise of the compressive 

sensing (CS) theory [5] , it is possible to recover a sparse band- 

limited function from much fewer points than conventional sam- 

pling theorems. The second and major contribution of this paper is 

introducing a compressive orientation averaging scheme with the 

use of compressive sensing theory to recover the spherical distri- 

butions of quantities in light scattering computations. 

The remaining of this paper is outlined as follows. In section 2 , 

we explain the relation between particle orientation as well as the 

direction statistics. In section 3 , we introduce two sampling meth- 
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Fig. 1. Examples of two point sets of size 800 generated by the algorithms described above. Left: Uniform sampling points generated by Monte Carlo method. Right: Fibonacci 

lattice on the unit sphere. 

Fig. 2. Scatterers used in the light scattering computations. Left: bi-sphere cluster. Right: multi-sphere cluster. 

ods on the unit sphere, which are Monte Carlo sampling and Fi- 

bonacci lattice sampling, and propose a novel scheme to recover a 

function based on compressive sensing. Then, we formulate a com- 

pressive orientation averaging scheme for light scattering compu- 

tations. In section 4 , we verify the proposed scheme in the simula- 

tions for light scattering by multi-sphere clusters. Finally, we make 

the conclusion in section 5 . 

2. Orientation averaging and direction statistics 

Recently, Mishchenko and Yurkin [13] provided a rigorous 

mathematical explanation for particle orientations in light scat- 

tering computations. Based on their work, we try to link particle 

orientations to direction statistics. In the following, we will show 

that direction statistics provide a rigorous statistical framework, 

with which (uniformly) random orientation and (non-uniformly) 

random orientation can be unified. It is known that particle 

orientations are uniquely parameterized by three Euler angles 

( α, β , γ ). Accordingly, orientation-averaged quantities such as scat- 

tering phase matrix can be interpreted as expected values over Eu- 

ler angles. Instead of rotating the object, it is equivalent to rotate 

the propagating direction of the incident wave. In methods such 

as FDTD, the simulation of each incident direction is decomposed 

into vertically and horizontally polarized components, in which the 

computed scattering properties of that incident direction are taken 

as the mean of these two situations. The three Euler angles param- 

eters are reduced to two. Therefore, a probability density function 

(PDF) for incident directions can then be expressed by the nonneg- 

ative spherical function f ( θ , φ) with the normalization condition: 

∫ π

0 

∫ 2 π

0 

f (θ, φ) sin θd θd φ = 1 (1) 

where f (θ, φ) = 

1 
4 π for uniform random distribution. In our sim- 

ulations, we assume all the model particles to be uniformly ran- 

domly oriented. Given a set of N incident directions, orientation 

averaging schemes become spherical integrations. And the orienta- 

tion averaging value can be written as 

E [ q ] = 

∫ ∫ 
q (θ, φ) f (θ, φ) sin θd θd φ (2) 

≈ 1 

N 

N ∑ 

j=1 

w j q (θ j , φ j ) (3) 

where { w j } denotes the weights and E [ ∗] denotes the expected 

value of a spherical function q ( θ , φ). For the uniform distribution 

and uniformly sampled points, we have w j = 1 . 

3. Orientation integration and compressive sensing 

3.1. Orientation integration with Fibonacci point sets 

If particle orientations are uniformly distributed, it is straight- 

forward to apply Monte Carlo method to sample points uniformly 
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