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a b s t r a c t 

Particle transport in Markov mixtures can be addressed by the so-called Chord Length Sampling (CLS) 

methods, a family of Monte Carlo algorithms taking into account the effects of stochastic media on par- 

ticle propagation by generating on-the-fly the material interfaces crossed by the random walkers during 

their trajectories. Such methods enable a significant reduction of computational resources as opposed to 

reference solutions obtained by solving the Boltzmann equation for a large number of realizations of ran- 

dom media. CLS solutions, which neglect correlations induced by the spatial disorder, are faster albeit 

approximate, and might thus show discrepancies with respect to reference solutions. In this work we 

propose a new family of algorithms (called ’Poisson Box Sampling’, PBS) aimed at improving the accu- 

racy of the CLS approach for transport in d -dimensional binary Markov mixtures. In order to probe the 

features of PBS methods, we will focus on three-dimensional Markov media and revisit the benchmark 

problem originally proposed by Adams, Larsen and Pomraning [1] and extended by Brantley [2]: for these 

configurations we will compare reference solutions, standard CLS solutions and the new PBS solutions for 

scalar particle flux, transmission and reflection coefficients. PBS will be shown to perform better than CLS 

at the expense of a reasonable increase in computational time. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Linear particle transport theory in random media is key to sev- 

eral applications in nuclear science and engineering, such as neu- 

tron diffusion in pebble-bed reactors or randomly mixed water- 

vapour phases in boiling water reactors [3–7] , and inertial confine- 

ment fusion [8–10] . Material and life sciences as well as radiative 

transport also often involve particle propagation in random me- 

dia [11–17] . 

In this context, the material cross sections composing the tra- 

versed medium and the particle sources are distributed according 

to some statistical laws, and the physical observable of interest 

is typically the ensemble-averaged angular particle flux 〈 ϕ( r , ω ) 〉 , 
namely, 

〈 ϕ(r , ω ) 〉 = 

∫ 
P (q ) ϕ 

(q ) (r , ω ) dq, (1) 

where ϕ( q ) ( r, ω) satisfies the linear Boltzmann equation corre- 

sponding to a single realization q , and P(q ) is the stationary prob- 

ability of observing the state q for the material cross sections 
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and/or the sources [3,18] . In the following, we consider linear par- 

ticle transport in binary stochastic mixing composed of two im- 

miscible random media (say α and β). 

Exact solutions for 〈 ϕ〉 , or more generally for some ensemble- 

averaged functional 〈 F [ ϕ] 〉 of the particle flux, can be obtained 

using a so-called quenched disorder approach: an ensemble of 

medium realizations are first sampled from the underlying mix- 

ing statistics; then, the linear transport equation is solved for each 

realization by either deterministic or Monte Carlo methods, and 

the physical observables of interest F [ ϕ] are determined; ensem- 

ble averages are finally computed. In a series of recent papers, 

we have provided reference solutions for particle transport in d - 

dimensional random media with Markov statistics [19,20] , where 

the spatial disorder has been generated by means of homogeneous 

and isotropic d -dimensional Poisson tessellations [21] . 

Reference solutions for particle transport in stochastic media 

are computationally expensive, so faster but approximate meth- 

ods have been therefore proposed. A first approximate approach 

consists in deriving an expression for the ensemble-averaged flux 

〈 ϕ〉 in each material: this generally leads to an infinite hierarchy 

of equations, which ultimately requires a closure formula, such 

as in the celebrated Levermore-Pomraning model [3,5,22] . A sec- 

ond approach is based on Monte Carlo algorithms that reproduce 
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the ensemble-averaged solutions to various degrees of accuracy by 

modifying the displacement laws of the simulated particles in or- 

der to take into account the effects of spatial disorder [9,23,24] . 

The Chord Length Sampling (CLS) algorithm is perhaps the most 

representative and best-known example of such algorithms: the 

basic idea behind CLS is that the interfaces between the con- 

stituents of the stochastic medium are sampled on-the-fly during 

the particle displacements by drawing the distances to the follow- 

ing material boundaries from a distribution depending on the mix- 

ing statistics. It has been shown that the CLS algorithm formally 

solves the Levermore-Pomraning model for Markovian binary mix- 

ing [9,25,26] . The free parameters of the CLS model are the average 

chord length �i through each material, and the volume fraction p i . 

Since the spatial configuration seen by each particle is regenerated 

at each particle flight, the CLS corresponds to an annealed disorder 

model, as opposed to the quenched disorder of the reference solu- 

tions, where the spatial configuration is frozen for all the travers- 

ing particles. This means that the correlations on particle trajec- 

tories induced by the spatial disorder are neglected in the stan- 

dard implementation of CLS. Generalization of these Monte Carlo 

algorithms including partial memory effects due to correlations for 

particles crossing back and forth between the same materials have 

been also proposed [9] . 

CLS, which had been originally formulated for Markov statistics, 

has been extensively applied also to randomly dispersed spherical 

inclusions into background matrices, with application to pebble- 

bed and very high temperature gas-cooled reactors [23,24] . In or- 

der to quantify the accuracy of CLS with respect to reference solu- 

tions for spherical inclusions, several comparisons have been pro- 

posed in two and three dimensions [23,24,27–29] . Some meth- 

ods to mitigate the errors between CLS and the reference solu- 

tions have been presented in the context of eigenvalue calcula- 

tions, e.g., in [30] . For Markov mixing specifically, a number of 

benchmark problems comparing CLS and reference solutions have 

been proposed in the literature so far [1,2,18,31,32] with focus on 

1 d -geometries (either of the rod or slab type); flat 2 d geometries 

have been considered in [10] . These benchmark comparisons have 

been recently extended to d -dimensional Markov geometries, for 

d = 2 (extruded) and d = 3 [33] . 

Not surprisingly, CLS solutions may display discrepancies as 

compared to reference solutions, whose relevance varies strongly 

with the system dimensionality, the average chord length and the 

material volume fraction [33] . For the case of 1 d slab geometries 

with Markov mixing, possible improvements to the standard CLS 

algorithm accounting for partial memory effects for particle tra- 

jectories have been detailed [9] , and numerical tests have revealed 

that these corrections contribute to palliating the discrepancies [2] , 

although a generalization to higher dimensions seems hardly fea- 

sible with reasonable computational burden [9] . 

In this work we propose a new family of Monte Carlo algo- 

rithms aimed at improving the standard CLS for d -dimensional 

Markov media, yet keeping the increase in algorithmic complex- 

ity to a minimum. Inspiration comes from the observation that the 

physical observables related to particle transport through quasi- 

isotropic Poisson tessellations based on Cartesian boxes are almost 

identical to those computed for isotropic Poisson tessellations, 

for any dimension d [20,34] , which confirms the considerations 

in [35] . This quite remarkable property suggests that the stan- 

dard CLS algorithm can be extended by replacing the memoryless 

sampling of material interfaces by the sampling of d -dimensional 

Cartesian boxes sharing the statistical features of quasi-isotropic 

Poisson tessellations, so as to mimic the spatial correlations that 

would be induced by isotropic Poisson tessellations. We will call 

this class of algorithms Poisson Box Sampling (PBS). 

In order to illustrate the behaviour of the PBS with respect ref- 

erence solutions and to CLS, we will revisit the classical bench- 

Table 1 

Material parameters for the three cases of the 

benchmark configurations. 

Case �α �α �β �β

1 10/99 99/100 100/11 11/100 

2 10/99 99/10 100/11 11/10 

3 2/101 101/20 200/101 101/20 

mark problem for transport in Markov binary mixtures proposed 

by Adams, Larsen and Pomraning [1] and revisited by Brantley [2] . 

The physical observables of interest will be the particle flux 〈 ϕ〉 , 
the transmission coefficient 〈 T 〉 and the reflection coefficient 〈 R 〉 , 
for incident flux conditions and for uniform interior sources. 

This paper is organized as follows: in Section 2 we will recall 

the benchmark specifications that will be used for our analysis in 

dimension d = 3 . In Section 3 we will illustrate the reference solu- 

tions for the benchmark problem obtained by using isotropic and 

quasi-isotropic Poisson tessellations: this preliminary investigation 

will allow establishing that quasi-isotropic tessellations yield re- 

sults very close to those of isotropic tessellations, as expected 

based on previous investigations. Then, in Section 4 we will de- 

scribe in detail the PBS algorithms, compare these methods to the 

reference solutions and to the standard CLS approach, and discuss 

their respective merits and drawbacks. Conclusions will be finally 

drawn in Section 5 . 

2. Benchmark specifications 

In order for this paper to be self-contained, we briefly recall 

here the benchmark specifications that have been selected for this 

work, which are essentially drawn from those originally proposed 

in [1] and [18] , and later extended in [2,31,32] . 

We consider mono-kinetic linear particle transport through a 

stochastic binary medium with homogeneous and isotropic Markov 

mixing. The medium is non-multiplying, with isotropic scattering. 

The geometry consists of a cubic box of side L = 10 (in arbitrary 

units), with reflective boundary conditions on all sides of the box 

except two opposite faces (say those perpendicular to the x axis), 

where leakage boundary conditions are imposed. Two kinds of 

sources will be considered: either an imposed normalized incident 

angular flux on the leakage surface at x = 0 (with zero interior 

sources), or a distributed homogeneous and isotropic normalized 

interior source (with zero incident angular flux on the leakage sur- 

faces). The benchmark configurations pertaining to the former kind 

of source will be called suite I, whereas those pertaining to the lat- 

ter will be called suite II [2] . Markov mixing statistics are entirely 

defined by assigning the average chord length for each material 

i = α, β, namely �i . The (homogeneous) probability p i of finding 

material i at an arbitrary location within the box follows from 

p i = 

�i 

�i + � j 

. (2) 

By definition, the material probability p i yields the volume frac- 

tion for material i . The cross sections for each material will be de- 

noted as customary �i for the total cross section and �s,i for the 

scattering cross section. The average number of particles surviving 

a collision in material i will be denoted by c i = �s,i / �i ≤ 1 . The 

physical parameters for the benchmark configurations are recalled 

in Tabs. 1 and 2 : the benchmark specifications include three cases 

(numbered 1, 2 and 3, corresponding to different materials), and 

three sub-cases (noted a, b and c , corresponding to different c i for 

a given material) for each case [1] . 

Following [2] , the physical observables of interest for the 

benchmark will be the ensemble-averaged outgoing particle cur- 

rents 〈 J 〉 on the two surfaces with leakage boundary con- 



Download English Version:

https://daneshyari.com/en/article/7846311

Download Persian Version:

https://daneshyari.com/article/7846311

Daneshyari.com

https://daneshyari.com/en/article/7846311
https://daneshyari.com/article/7846311
https://daneshyari.com

