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This paper is devoted to non-uniform approximations for the radiative properties of gases based on ef- 

fective scaling factors. These methods are recognized as more accurate than other established techniques 

such as the Curtis-Godson approximation in statistical narrow band modeling, or the Correlated- k as- 

sumption. An analytical solution is proposed to calculate these scaling factors and a comprehensive de- 

scription of the method to derive its parameters from high resolution spectra is given. Practical impli- 

cations of the results of the present work are quite large, as non-uniform techniques based on effective 

scaling factors can be applied to any model form. The main value of this work is to render possible 

and computationally realistic the use of this category of non-uniform approximations for radiative heat 

transfer calculations. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

For many years, the scaling approximation, which consists in 

assuming that the ratio between two spectra in distinct thermo- 

physical states is a constant with respect to the wavenumbers, was 

the only possible way to handle radiative heat transfer problems 

in non-uniform gaseous media. This simple idea, which is known 

to provide inaccurate results in a general frame as gas spectra in 

distinct states are not linearly dependent, is however the build- 

ing block of many non-uniform treatments proposed all along the 

past century. Various techniques are in fact derived from the scaled 

view such as: 

1/ non-uniform approximations involving two instead of one 

scaling coefficient, like in the Curtis-Godson (CG) approximation 

[1] ,2/ the so-called Correlated- k technique [2] , which mostly con- 

sists of the definition of scaling coefficients that depend on the val- 

ues of the absorption coefficient in one particular state chosen as 

a reference. 

3/ the Godson-Weinreb-Neuendorffer GWN [1,3] / Emissivity 

Growth Approximation EGA [4] or Scaled- k [5] approaches, which 

do not try to provide an explicit way to evaluate effective scaling 

factors but instead rely on an implicit definition of these quantities 

(see Eq. (13) later in this paper). 

These last methods are widely recognized as more accurate 

than those based on explicit definitions of finite numbers of scal- 

ing coefficients: see Ref. [1] , chapter 12, in which comparisons be- 

tween the GWN and CG methods are described; or Ref. [5] where 
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it is shown that the Scaled- k approach outperforms the Correlated- 

k method for radiative heat transfer in highly non-uniform situa- 

tions. Despite this advantage of non-uniform techniques based on 

effective scaling factors, it must be recognized that this category of 

methods has not embraced the same interest as other, in fact usu- 

ally simpler, non-uniform approximations. This is mainly because, 

in general, solving the implicit equation Eq. (13) to determine the 

effective scaling factor involves iterative numerical techniques that 

increase significantly the computational cost of the approach com- 

pared to explicit methods. 

Recently, the � -distribution approach was proposed [6] . This ap- 

proximate model for the radiative properties of gases is founded on 

a formalism that: 1/ provides accurate approximations in uniform 

media and 2/ allows solving very efficiently the implicit equation 

involved in the definition of effective scaling factors. While devel- 

oping this method, the author of the present paper noticed that 

the literature on effective scaling approximation is quite meager. 

Indeed, the non-uniform approximation (viz. the implicit equation) 

is always introduced in an intuitive way without specification of 

the assumptions that may lead to this particular equation. Accord- 

ingly, the existing literature on effective scaling factors does not 

permit studying in depth some of their properties (the functional 

form of the solution, for instance) nor it can be helpful to improve 

the technique further. 

The aim of the present paper is to provide insights into the as- 

sumptions made to extend the usual concept of constant scaling 

coefficients to effective ones. Starting from a truly scaled situation, 

we first explain how the concept of constant scaling coefficient 

can be extended to real spectra. The main assumption required is 

shown to be the statistical independence between a spectrum, cho- 
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Nomenclature 

EN radiative energy emitted in a given spectral region 

F distribution function of spectral scaling coefficients 

– Eq. (7) 

g cumulative k -distribution – Eq. (5) 

� inverse of the transmission function (cm) as defined 

in Section 2 

L gas path length (cm) 

M joint distribution function of spectral and absorp- 

tion coefficients – Eq. (10) 

u ( L ) effective (path dependent) scaling factor 

u ( L ) · L effective scaling function (cm) – Eq. (14) 

u η spectral scaling coefficient 

U constant scaling factor 

x abscissas of a Gauss-Legendre quadrature over [0,1] 

Greek symbols 

�η( k ) set of wavenumbers { η ∈ �η such that k < κ1 
η < k + dk } 

�η( k ) width of the set of wavenumbers 

{ η ∈ �η such that k < κ1 
η < k + dk } 

κη spectral absorption coefficient (cm 

−1 ) 

η wavenumber (cm 

−1 ) 

μS = [ 1 
�η · ∫ �η ( κη) s dη] 1 /s generalized mean absorption 

coefficient with real exponent s 

ρSP Spearman’s rank correlation coefficient – Eq. (11) 

τ transmission function; transmissivity 

ω weights of a Gauss-Legendre quadrature over [0,1] 

ξ dummy variable inside [0,1] 

Subscripts 

12 related to the non-uniform path L = L 1 + L 2 
b blackbody 

P Planck mean 

R Rosseland mean 

S associated with the set of wavenumbers defined as 

{ η ∈ �η such that μS < κ1 
η < μS + d μS } 

Superscripts 

eff effective 

GG gray gas 

1,2 state 1 or 2 of the gas 

�η width of the spectral interval for the averaging of 

spectral properties 

Other notations 

f ◦g represents the functional composition of f and g 

i.e. f ◦g ( x ) = f [ g ( x )] 

τ�η
i j 

( L p , L q ) = 

1 
�η

∫ 
�η exp ( −κ i 

ηL p − κ j 
ηL q ) dη Ex. τ�η

11 
( L 1 , L 2 ) 

= 

1 
�η

∫ 
�η exp ( −κ1 

ηL 1 − κ1 
ηL 2 ) dη

Abbreviations 

EGA Emissivity Growth Approximation - Ref. [4] 

GWN Godson-Weinreb-Neuendorffer’s method - Refs. [1,3] 

LBL Line-By-Line 

MoD Measure of Dependence – Refs. [12,13] 

SNB Statistical Narrow Band model – Ref. [1] 

sen as a reference, and the spectral scaling coefficients defined as 

the ratio between any other spectrum and this reference. Based on 

this assumption of statistical independence, an explicit mathemat- 

ical formula – Eq. (27) -, which is the core finding of the present 

work, is derived for effective scaling functions. The full method to 

construct this function for radiative heat transfer applications is 

also described and assessed against reference LBL calculations in 

non-uniform situations. 

The main practical implication of the results provided in the 

present work is that effective scaling functions require the spec- 

ification of parameters that are hard to define without optimiza- 

tion. To some extent, one faces the same problem as encountered 

in Correlated- k models in which the existence of a strictly increas- 

ing function that associates spectra in distinct states is assumed. 

This function cannot be identified directly from LBL data because 

it is founded on assumptions about the statistical properties of gas 

spectra, not on a true description of high resolution data. Accord- 

ingly, the only way to define this function to associate spectra in 

distinct states is implicit, by using a relationship that involves the 

cumulative distributions of the absorption coefficients in the var- 

ious thermophysical states. In the same way, within the frame of 

scaled models with variable scaling factors, the most relevant ap- 

proach to derive effective scaling factors is to solve the implicit 

equation directly. This makes the � -distribution approach undoubt- 

edly the most efficient and accurate method for this purpose. This 

statement is discussed further in the paper. The paper also pro- 

vides an explicit formulation to solve this equation, which can be 

used with any model form. 

The main value of the present paper is to provide, to the best of 

the author’s knowledge, the first detailed analysis of models based 

on effective scaling factors, from the derivation of the scaling func- 

tion up to the analysis of the conditions required between spec- 

tra for this formulation to be acceptable. Results from the present 

work have strong implications for future developments of the � - 

distribution approach but are not restricted to this approximate 

model: scaled- k methods, such as FSSK [5] or the recently pro- 

posed Scaled-SLW modeling [7] , can benefit directly from results 

described here. 

The paper is organized as follows. In the second section, the 

concept of effective scaling models is introduced. A simple case is 

treated in order to illustrate some characteristics of this kind of ap- 

proaches. This section ends with a detailed derivation of effective 

scaling functions within the frame of narrow band models. In the 

third section, the full method to evaluate the coefficients that ap- 

pear in the effective scaling function is described. Detailed statis- 

tical analysis of spectra together with their correlation with spec- 

tral scaling coefficients are given. Comparisons of the approximate 

model with LBL calculations show the relevancy of the method 

proposed for radiative heat transfer calculations. 

All derivations provided in this work are restricted to the two- 

cell problem. This analysis is sufficient for application together 

with all existing methods based on effective scaling factors which 

either: 1/ assume the existence of some reference state and then 

scale any other state to this reference [5,7] ; or, 2/ propagate the 

information about scaling factors along a non-uniform path in a 

step by step manner by coupling adjacent layers [3,4,6,11] . In both 

cases, only two distinct states of the gas are involved. 

2. Model of effective scaling functions 

2.1. Introduction to the concept of effective scaling factors / functions 

Let us start by reminding some results related to scaled spectra. 

For this purpose, we consider a non-uniform layer discretized in 

two homogeneous isothermal sub-paths: the first one has a length 

L 1 and the gas is in the thermophysical state φ1 , the second path 

has a length L 2 and the state of the gas is φ2 . The spectral absorp- 

tion coefficients in the two layers are κ1 
η and κ2 

η respectively. We 

will restrict here our analysis to narrow bands �η over which: 1/ 

the Planck function is constant; 2/ absorption coefficients κ1 
η and 

κ2 
η are strictly positive. 

In the case of truly scaled spectra, the ratio κ2 
η/ κ1 

η = U is a con- 

stant with respect to the wavenumbers. The transmissivity of the 

non-uniform path L = L 1 + L 2 averaged over the narrow band �η, 
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