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a b s t r a c t 

In this paper we make practical use of the recently developed first-principles approach to electromagnetic 

scattering by particles immersed in an unbounded absorbing host medium. Specifically, we introduce an 

actual computational tool for the calculation of pertinent far-field optical observables in the context of 

the classical Lorenz–Mie theory. The paper summarizes the relevant theoretical formalism, explains var- 

ious aspects of the corresponding numerical algorithm, specifies the input and output parameters of a 

FORTRAN program available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html , and tabu- 

lates benchmark results useful for testing purposes. This public-domain FORTRAN program enables one 

to solve the following two important problems: (i) simulate theoretically the reading of a remote well- 

collimated radiometer measuring electromagnetic scattering by an individual spherical particle or a small 

random group of spherical particles; and (ii) compute the single-scattering parameters that enter the 

vector radiative transfer equation derived directly from the Maxwell equations. 

Published by Elsevier Ltd. 

1. Introduction 

Electromagnetic scattering by particles immersed in an un- 

bounded absorbing host medium has been the subject of active 

yet somewhat controversial research [1–26] . Most of the contro- 

versy had stemmed from the enduring desire to preserve the con- 

ventional notions of the optical cross sections introduced in the 

context of electromagnetic scattering in a nonabsorbing host [27–

29] as well as their traditional usage in the phenomenological ra- 

diative transfer equation [30–50] . The resolution of this contro- 

versy has come from (i) relying on the first-principles derivation 

of the entire theoretical formalism (including the radiative transfer 

theory) directly from the macroscopic Maxwell equations [21–23] , 

and (ii) the realization that in the context of classical macroscopic 

electromagnetics, the introduction of an optical observable is only 

meaningful if it addresses one or both of the following two funda- 

mental problems [51,52] : 

• model theoretically the reading of a specific detector of electro- 

magnetic radiation; and 

• quantify the electromagnetic energy budget of a finite volume 

of space. 
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In the final analysis, it is the practical solution of these problems 

that demonstrates what theoretical notions are contrived and what 

optical observables emerge naturally and thereby serve as legiti- 

mate components of the scattering formalism. 

The objective of this paper is to apply the main results of 

Refs. [21–23] to the development of a practical computational tool 

for the calculation of relevant far-field optical observables in the 

framework of the classical Lorenz–Mie theory of electromagnetic 

scattering by a homogeneous spherical particle embedded in an 

unbounded absorbing host medium [53] . We summarize all perti- 

nent formulas, describe in detail the corresponding numerical algo- 

rithm, list the input and output parameters of the resulting public- 

domain FORTRAN program available at https://www.giss.nasa.gov/ 

staff/mmishchenko/Lorenz-Mie.html , and tabulate benchmark nu- 

merical results useful for testing purposes. The quantities gener- 

ated by this program can be used to solve the following two prob- 

lems of actual practical significance: 

1. quantify the reading of a remote polarization-sensitive well- 

collimated radiometer measuring electromagnetic scattering by 

an individual spherical particle or a small random group of 

spherical particles; and 

2. compute the single-scattering parameters that enter the vector 

radiative transfer equation derived in Refs. [22,23] directly from 

the macroscopic Maxwell equations. 
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Fig. 1. Far-field electromagnetic scattering by a homogeneous spherical particle em- 

bedded in a homogeneous absorbing host medium. 

Since this paper is intended, in particular, to serve as a detailed 

user guide to an actual computer program, we have tried to make 

it maximally self-contained. This explains the inclusion of more 

than 100 formulas, some of which are well known. 

2. Far-field frequency-domain formalism 

Consistent with Refs. [28,29,53] , in this paper we assume 

the exp ( − i ωt ) time-harmonic dependence of all electromagnetic 

fields, where i = (−1) 1 / 2 , ω is the angular frequency, and t is time. 

Consider a fixed homogeneous spherical object embedded in an in- 

finite, homogeneous, linear, isotropic, nonmagnetic, and, in general, 

absorbing host medium (see Section 9.25 of Ref. [53] ). We assume 

that the object is made of an isotropic, linear, and nonmagnetic 

material. The central point O of the spherical object serves as the 

origin of the laboratory coordinate system and as the common ori- 

gin of all position vectors r ( Fig. 1 ). Let ε 1 and ε 2 be the complex- 

valued permittivities of the host medium and the scattering object, 

respectively, and μ0 be the (real-valued) permeability of a vacuum. 

Then the wave numbers of the host and the object are given, re- 

spectively, by 

k 1 = k ′ 1 + i k ′′ 1 = ω 

√ 

ε 1 μ0 (1) 

and 

k 2 = k ′ 2 + i k ′′ 2 = ω 

√ 

ε 2 μ0 , (2) 

where k ′ 1 > 0, k ′ ′ 1 ≥ 0, k ′ 2 > 0, and k ′ ′ 2 ≥ 0. In practice, it is 

convenient to define the scattering problem in terms of the wave- 

length in a vacuum, λ, and the complex refractive indices of the 

host, m 1 , and the object, m 2 , given, respectively, by 

m 1 = m 

′ 
1 + i m 

′′ 
1 = 

√ 

ε 1 
ε 0 

(3) 

and 

m 2 = m 

′ 
2 + i m 

′′ 
2 = 

√ 

ε 2 
ε 0 

, (4) 

where ε0 is the electric permittivity of a vacuum. Then 

ω = 

2 πc 

λ
, (5) 

k 1 = 

2 πm 1 

λ
, (6) 

and 

k 2 = 

2 πm 2 

λ
, (7) 

where 

c = 

1 √ 

ε 0 μ0 

(8) 

is the speed of light in a vacuum. 

To allow for an unambiguous definition of the Stokes parame- 

ters, let us further assume the incident field to be a homogeneous 

(or uniform [54] ) plane electromagnetic wave propagating in the 

direction of the unit vector ˆ n 

inc and given by 

E 

inc ( r ) = exp 

(
i k 1 ̂  n 

inc · r 
)
E 

inc 
0 , E 

inc 
0 · ˆ n 

inc = 0 , (9) 

where r is the position vector of the observation point ( Fig. 1 ). 

Note that E 

inc 
0 

is the electric field at the origin of the laboratory 

coordinate system. In the far zone of the object, the scattered field 

becomes an outgoing transverse spherical wave given by [21] 

E 

sca (r ) → 

r→∞ 

exp( − k ′′ 1 r) 
exp(i k ′ 1 r) 

r 
E 

sca 
1 ( ̂  n 

sca ) 

= exp( − k ′′ 1 r ) 
exp(i k ′ 1 r ) 

r 

↔ 
A ( ̂  n 

sca , ̂  n 

inc ) · E 

inc 
0 . (10) 

Here, r = | r | is the distance from the origin; ˆ n 

sca = ̂  r = r /r is the 

unit vector in the scattering direction; and 

↔ 

A ( ̂  n 

sca , ̂  n 

inc ) is the scat- 

tering dyadic such that 

ˆ n 

sca ·
↔ 
A ( ̂  n 

sca , ̂  n 

inc ) = 0 (11) 

and 

↔ 
A ( ̂  n 

sca , ̂  n 

inc ) · ˆ n 

inc = 0 , (12) 

where 0 is a zero vector. Importantly, the angular and radial de- 

pendencies on the right-hand side of Eq. (10) are completely sep- 

arated, so that the scattering dyadic is independent of r . The scat- 

tering dyadic has the dimension of length. 

The total electric field at a far-field observation point is the sum 

of the incident and scattered fields: 

E (r ) = exp (i k 1 ̂  n 

inc · r ) E 

inc 
0 + exp( − k ′′ 1 r) 

× exp(i k ′ 1 r) 
r 

↔ 
A ( ̂  n 

sca , ̂  n 

inc ) · E 

inc 
0 . (13) 

It is straightforward to derive that the total far-field magnetic field 

is given by 

H (r ) = exp (i k 1 ̂  n 

inc · r ) 
k 1 

ω μ0 

ˆ n 

inc × E 

inc 
0 + exp( − k ′′ 1 r) 

× exp(i k ′ 1 r) 
r 

k 1 
ω μ0 

ˆ n 

sca × [ 
↔ 
A ( ̂  n 

sca , ̂  n 

inc ) · E 

inc 
0 ] . (14) 
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