Contents lists available at ScienceDirect

Molecular Astrophysics

journal homepage: www.elsevier.com/locate/molap

Strengths of rotational lines from H_2CC molecule: Addressing tentative detection

M.K. Sharma^a, M. Sharma^b, S. Chandra^{*,a}

^a Amity Centre for Astronomy & Astrophysics, Amity Institute of Applied Sciences, Amity University, Sector - 125, Noida 201313, India ^b School of Studies in Physics, Jiwaji University, Gwalior 474011, India

ARTICLE INFO	A B S T R A C T
Keywords: ISM: Molecules H ₂ CC Molecule Einstein A-coefficients Molecular data	Though H ₂ C, H ₂ CCC, H ₂ CCCC, H ₂ CCO, H ₂ CO, H ₂ CO, H ₂ CS molecules have been identified in cool interstellar clouds, identification of H ₂ CC is still awaited. Formation of H ₂ CC in the interstellar medium is quite probable as the cosmic abundance of carbon is 20 times larger than that of the sulphur, and the molecule H ₂ CS has already been identified in the interstellar medium. To our knowledge, no laboratory study for H ₂ CC is available in literature. Physical conditions in the interstellar medium are quite different as compared to those in a terrestrial laboratory. Using the rotational and centrifugal distortion constants for H ₂ CC, we have calculated the energies of rotational levels and the strengths of lines between the levels up to 270 cm ⁻¹ . We have found that 88 and 87 lines of ortho-H ₂ CC and para-H ₂ CC, respectively have Einstein A-coefficient larger than 10^{-5} s ⁻¹ . These lines may help in the identification of H ₂ CC in the interstellar medium. Tentative detection of H ₂ CC has been addressed.

1. Introduction

Formaldehyde (H₂CO) is the first organic molecule identified in a number of galactic and extragalactic radio sources through its transition 110 - 111 at 4.830 GHz in absorption (Snyder et al., 1969). Later on, widespread distribution of H₂CO and of carbon monoxide (CO) was found in the interstellar medium (ISM), and subsequent discovery of CS, the sulpher analogue of CO, in a number of radio sources, suggested that the thioformaldehyde (H₂CS), the sulpher analogue of H₂CO, might be present in the interstellar medium. After some unsuccessful attempts, the first success for the identification of H₂CS was reported by Sinclair et al. (1973) through its transition $2_{11} - 2_{12}$ at 3.139 GHz in Sgr B2 in absorption. The H₂CC molecule is very similar to H₂CO and H₂CS, as all these three: (i) are a-type asymmetric top molecules, (ii) have $C_{2\nu}$ symmetry. Further, all the C,S and O atoms have nuclear spin zero and due to two hydrogen atoms, the energy levels of these molecules are divided into ortho and para species. Identification of H₂CC in the ISM is quite probable as the cosmic abundance of carbon is 20 times larger than that of the sulpher.

Other similar molecules identified in the ISM are H_2C (Nakajima et al., 2011), H_2CCC (Cernicharo et al., 1991a), H_2CCCC (Cernicharo et al., 1991b; Kawaguchi, 1991), H_2CCO (Irvine, 1989; Matthews and Sears, 1986; Ohishi, 1991; Turner, 1977). After identification of these six molecules, non-identification of H_2CC in the ISM appears quite astonishing. Chandra et al. (2011) and

2. Computational methods

The H₂CC is a planar *a*-type asymmetric top molecule having large electric dipole moment 2.4661 Debye along the *a*-axis of inertia. Quantum theoretical calculations on H₂CC have been performed using a density functional (DFT) approach with the help of GAUSSIAN 2009, (Frisch, 2010). We have employed the Becke three parameter hybrid functional in conjunction with the Lee-Yang-Parr non-local correlation functional (B3LYP) (Becke, 1993; Lee et al., 1988) in conjunction with

https://doi.org/10.1016/j.molap.2018.06.001

Sharma et al. (2013) have proposed that H₂CC may be identified in a cool cosmic object through its transition $I_{10} - I_{11}$ at 4.89 GHz. However, the Einstein *A*-coefficient for this transition is quite small ($A = 4.15 \times 10^{-9} \text{ s}^{-1}$). That is, the radiative life-time of upper level of this transition is 2.4096 $\times 10^8 \text{ s} = 7.64$ years. We, therefore, have attempted to look for other transitions of H₂CC for which the radiative life-time is small and therefore the Einstein *A*-coefficient is quite large; larger than 10^{-5} s^{-1} . Rotational levels are denoted by $J_{k_ak_c}$, where *J* stands for the rotational quantum number, and k_a and k_c are the projections of *J* on the axis of symmetry in case of prolate and oblate symmetric tops, respectively. Owing to the parallel and anti-parallel orientations of nuclear spins of two hydrogen atoms, the H₂CC can have two species, known as the ortho-H₂CC (I = 1, parallel spins) and para-H₂CC (I = 0, anti-parallel spins). These two species behave as if they are two distinct molecules, as there are no transitions between them.

^{*} Corresponding author. E-mail address: suresh492000@yahoo.co.in (S. Chandra).

Received 15 December 2016; Received in revised form 15 May 2018; Accepted 9 June 2018 Available online 15 June 2018 2405-6758/ © 2018 Elsevier B.V. All rights reserved.

Table 1

Rotational and centrifugal distortion constants of H₂CC in MHz.

Constant	cc-pVTZ	aug-cc-pVDZ	aug-cc-pVTZ	aug-cc-pVQZ
$A \times 10^{-5}$	2.858903384	2.858903384	2.858903384	2.858903384
$B \times 10^{-4}$	3.99341083	3.99341083	3.99341083	3.99341083
$C \times 10^{-4}$	3.50396536	3.50396536	3.50396536	3.50396536
$D_J imes 10^3$	42.70790520	43.44087371	44.28356329	44.55227056
D_{JK}	20.98797907	18.94745263	20.44459322	20.41969840
D_K	5.317724694	6.440167938	5.879314400	5.933397632
$d_1 \times 10^2$	-1.442126677	-1.373607832	-1.445080323	-1.452037644
$d_2 \times 10^2$	-2.675152631	-2.408896481	-2.609261594	-2.613141728
$H_J \times 10^6$	-9.085110924	-7.573403608	- 8.601743486	- 8.655849617
$H_{JK} imes 10^3$	2.717970741	2.280665412	2.564823121	2.580959398
$H_{KJ} imes 10^2$	-1.854934803	-1.597951879	-1.709596957	-1.731162015
$H_K \times 10^2$	2.401038405	2.151628752	2.272677147	2.294269779
$h_1 \ imes 10^6$	-1.524539329	-1.248551723	-1.444404960	-1.443374339
$h_2 \ imes 10^6$	4.698862167	3.929762419	4.456301949	4.485417315
$h_3 \times 10^6$	1.651996740	1.367132587	1.571699754	1.572110353

Table 2

the basis sets, cc- pVTZ, aug-cc-pVDZ, aug-cc-pVTZ and aug-cc-pVQZ. The resulting rotational and centrifugal distortion constants are given in Table 1. These rotational and centrifugal distortion constants are for a Watson's type rotational operator (Watson, 1977), written in I^r representation and with S-type reduction. In absence of laboratory data, use of such data provide reasonably good qualitative results (Sharma et al., 2017,2018). Sharma et al. (2017, 2018) calculated rotational level of c-C₃H₂O and c-C₂H₄O molecules, respectively, by using (i) laboratory data and (ii) data obtained from the optimization using B3LYP method and found that the maximum deviations of the energies obtained from the optimization data was less than 0.8 % as compared to those obtained from the laboratory data. In absence of laboratory information, the use of optimization with the help of B3LYP provides good results which may however be treated as qualitative. Quantum mechanical calculation of PAHs and prebiotic molecules have been done by Mackie et al. (2018) and Skouteris et al. (2017), respectively.

As the electric dipole moment of H_2CC is along the *a*-axis of inertia, the radiative transitions between the rotational levels are governed by the following selection rules:

J:	$\Delta J = 0, \pm 1$	
k_a, k_c :	odd, even \longleftrightarrow odd, odd	(ortho-transition)
	even, even \leftrightarrow even, odd	(para-transition)

We have employed the software ASROT (Kisiel, 2001) where we used the rotational and centrifugal distortion parameters given in Table 1 for aug-cc-pVQZ basis set. The calculated values for energies of levels are given in Table 2 and the Einstein A-coefficients are given in Table 3 for ortho-H₂CC and in Table 4 for para-H₂CC. Einstein A-coefficients for transitions between 23 levels of ortho-H₂CC were calculated and used for the transfer of radiation by Chandra et al. (2011) and Sharma et al. (2013).

3. Results and discussion

Since the kinetic temperature in a cosmic object where H_2CC may be identified might be few tens of Kelvin, we have considered only those rotational levels which lie below 270 cm⁻¹.

For a spectral line to be a strong radio emission line under interstellar conditions, besides a sufficient abundance of the molecule under consideration, two further conditions need to be satisfied:

(i) The upper level must be sufficiently populated. In the interstellar clouds the basic excitation of molecules is dominated in most cases by the collisions. At a given temperature, this limits the energy of upper level. We have chosen the condition for the energy *E_j* of upper level *j* of transition:

$E_i <$	270	cm ⁻¹
---------	-----	------------------

Level	ortho-H ₂ CC			para-H ₂ CC		
No.	Level	E (GHz)	E (cm ⁻¹)	Level	E (GHz)	E (cm ⁻¹)
1	$1_{1,1}$	320.883	10.696	0 _{0,0}	0.000	0.000
2	$1_{1,0}$	325.777	10.859	$1_{0,1}$	74.974	2.499
3	$2_{1,2}$	465.854	15.528	$2_{0,2}$	224.847	7.495
4	$2_{1,1}$	480.536	16.018	30,3	449.474	14.982
5	31,3	683.263	22.775	40,4	748.635	24.954
6	31,2	712.625	23.754	5 _{0,5}	1122.036	37.401
7	41,4	973.055	32.435	$2_{2,1}$	1217.949	40.598
8	41,3	1021.984	34.066	$2_{2,0}$	1218.020	40.601
9	5 _{1,5}	1335.159	44.505	3 _{2,2}	1442.378	48.079
10	51,4	1408.532	46.951	$3_{2,1}$	1442.733	48.091
11	61,6	1769.486	58.983	6 _{0,6}	1569.317	52.311
12	61,5	1872.165	62.406	42,3	1741.558	58.052
13	71,7	2275.932	75.864	42,2	1742.625	58.087
14	71,6	2412.754	80.425	70,7	2090.055	69.668
15	33,1	2682.830	89.428	5 _{2,4}	2115.441	70.515
16	33.0	2682.830	89.428	5 _{2.3}	2117.928	70.598
17	81.8	2854.383	95.146	62.5	2563.966	85.466
18	43.2	2981.381	99.379	62.4	2568.931	85.631
19	43.1	2981.385	99.379	80.8	2683.771	89.459
20	81.7	3030.142	101.005	72.6	3087.057	102.902
21	53.3	3354.629	111.821	72.5	3095.969	103.199
22	53.2	3354.647	111.822	90.9	3349.951	111.665
23	919	3504.710	116.824	827	3684.627	122.821
24	9 _{1.8}	3724.143	124.138	826	3699.415	123.314
25	63.4	3802.613	126.754	100.10	4088.061	136.269
26	63.3	3802.665	126.756	9 _{2.8}	4356.576	145.219
27	10, 10	4226.777	140.893	9 _{2 7}	4379.664	145.989
28	73.5	4325.371	144.179	4 _{4.1}	4716.200	157.207
29	73.4	4325.503	144.183	44.0	4716.200	157.207
30	1019	4494.539	149.818	110 11	4897.571	163.252
31	836	4922.947	164.098	54.2	5087.917	169.597
32	835	4923.238	164.108	541	5087.917	169.597
33	111 11	5020.440	167.348	102.9	5102.792	170.093
34	11,10	5341.074	178.036	102.9	5137.115	171.237
35	927	5595.385	186.513	64 3	5534.029	184,468
36	936	5595.967	186.532	64.2	5534.029	184,468
37	121 12	5885.550	196.185	120.12	5777.981	192.599
38	121 11	6263.453	208.782	112.10	5923.148	197.438
39	10.0	6342 726	211 424	112,10	5972 144	199.071
40	103,8	6343 808	211.460	744	6054 565	201 819
41	13, 12	6821 954	227 398	74,4	6054 566	201.819
42	11	7165.006	238 834	84.5	6649 559	221 652
43	113,9	7166 901	238 897	8	6649 561	221.002
44	13,8	7261 340	242 045	13	6728 841	224 295
45	5	7315 789	243.860	120,13	6817 506	227 250
46	5 _{5,1}	7315 780	243.860	12,11 12,11	6885 081	220 502
47	55,0 65 o	7750 574	2-58 652	142,10 Q	7310 047	243.069
48	6	7759.574	258.652	74,6 Q	7319.047	243.900
40	0 _{5,1} 14	7820 500	250.052	24,5 14	7740 770	243.200
50	171,14 19	2062 257	200.903	12 12	7725 714	250.520
50	123,10	0002.237	200./42	132,12	//03./14	239.324

Download English Version:

https://daneshyari.com/en/article/7846564

Download Persian Version:

https://daneshyari.com/article/7846564

Daneshyari.com