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a b s t r a c t

The amplitude of an acceleration wave propagating along the characteristic associated with the largest
eigenvalue in a non-ideal relaxing gas is evaluated. The evolution of a characteristic shock and its
interaction with the acceleration wave is studied. The amplitudes of the reflected and transmitted waves
and the jump in the shock wave acceleration after interaction are computed. The effects of relaxation and
non-ideality on the amplitude of acceleration wave are discussed.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The term acceleration wave means an isolated geometric sur-
face that moves relative to the material and across which the
acceleration (but not the velocity) is discontinuous [1]. In Con-
tinuum Mechanics, the acceleration waves are also known as weak
discontinuity waves (i.e. Cð1Þ waves) and are important kind of
solutions of non-linear hyperbolic systems. These waves are
characterized by a discontinuity in a normal derivative of the field
but not in the field itself [2]. The evolution of a weak discontinuity
or acceleration wave for a hyperbolic quasi-linear system of
equations satisfying Bernoulli's law is described extensively in the
literatures [3–5].

For a characteristic shock, the shock surface coincides with a
characteristic surface and its velocity with an eigenvalue of the
system, both ahead and behind the shock. The corresponding
eigenvalue may be single or have multiplicity j41. In the case
where the eigenvalue is single, the shock is characteristic if and
only if the exceptionality condition ∇λ � R¼ 0 is satisfied, where λ
is the eigenvalue (and also the velocity of the characteristic shock),
R is the corresponding right eigenvector of the system and ∇ is the
gradient with respect to the field vector [6,7]. The shock corre-
sponding to the multiple eigenvalue that has multiplicity j41 is
always exceptional [8–10].

The works of Jeffrey [11] and Boillat and Ruggeri [12] are the
origin of the general theory of wave interactions. The shock

undergoes an acceleration jump as a consequence of an interaction
with a weak wave [12–14]. Radha et al. [15] verified that the
general theory of wave interaction problem which originated from
the work of Jeffrey [11] leads to the results obtained by Brun [14]
and Boillat and Ruggeri [12]. The theory has been successfully
applied to study the interaction of discontinuity wave with a
characteristic shock or a strong shock in the mediums like shallow
water, relaxing gas, dusty gas, transient pinched plasma and non-
ideal gas [16–23].

At high temperatures, the internal energy of the gas molecules
consists of translational, rotational and vibrational components.
When a gas is compressed by a receding piston or by the passage
of a shock front, the whole energy goes initially to increase the
translational energy, and it is followed by a relaxation from
translational mode to rotational mode and also from translational
mode to vibrational mode until the equilibrium between these
modes is re-established [24]. The process is called relaxation and
the departure from equilibrium is due to vibrational relaxation;
the rotational and translational modes are assumed to be in local
thermodynamical equilibrium throughout. Arora et al. [25] used a
similarity method to study imploding strong shocks in a non-ideal
relaxing gas with van der Waals equation of state. One dimen-
sional steepening of waves in non-ideal relaxing gas is studied in
[26] and it is observed that the transport equations for the dis-
continuities in the first order derivatives of the flow variables lead
to Bernoulli type of equations.

In this paper, we considered a system of partial differential
equations describing the one dimensional unsteady plane and
radially symmetric flow of an inviscid vibrationally relaxing gas
with van der Waals equation of state. The evolution of a char-
acteristic shock is studied and the amplitude of the acceleration
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wave propagating along the characteristic associated with the
largest eigenvalue is evaluated. The interaction of the acceleration
wave with the characteristic shock is considered and the jump in
the shock acceleration and the amplitudes of reflected and trans-
mitted waves after interaction are evaluated by using the results of
general theory of wave interaction [15].

2. Basic equations

We consider a system of partial differential equations describ-
ing the one dimensional unsteady plane (m¼0), cylindrically
symmetric (m¼1) and spherically symmetric (m¼2) flow of an
inviscid vibrationally relaxing gas with van der Waals equation of
state as [25]

UtþAUx ¼ f ; ð1Þ
where U ¼ ðρ;u; p;σÞtr , f ¼ ð�mρu=x;0; �γpmu=ðð1�bρÞxÞ� ðγ�1Þ
ρQ ;Q Þtr and

A¼

u ρ 0 0
0 u 1=ρ 0
0 γp=ð1�bρÞ u 0
0 0 0 u

0
BBB@

1
CCCA:

Here, x is the distance, t the time, ρ the density, u the particle
velocity, p the pressure, σ the vibrational energy, γ the ratio of spe-
cific heats, b the van derWaals excluded volume and lies in the range
0:9� 10�3rbr1:1� 10�3 (SI unit of b is m3=kg) [27,28]. It may
ne noted that b¼0 corresponds to the case of ideal relaxing gas [24].
The quantity Q is the rate of change of vibrational energy, and is a
function of p, ρ and σ, given by

Q ¼ ðσ ðp;ρÞ�σÞ
τ

;

where σ ¼ σeþcfpð1�bρÞ=ρ�ð1�bρeÞpe=ρeg is the equilibrium
value of σ and the suffix e refers to an initial equilibrium reference
state; the quantities τ and c are the relaxation time and the ratio of
vibrational specific heat to the specific gas constant, respectively. If
not stated otherwise, a variable as a subscript indicates partial dif-
ferentiation with respect to that variable.

The van der Waals equation of state is of the form

p¼ ρRT
ð1�bρÞ;

where R is the specific gas constant and T is the translational
temperature.

The matrix A in Eq. (1) has eigenvalues

λð1Þ ¼ uþa; λð2;1Þ ¼ λð2;2Þ ¼ u ðλð2Þ ¼ u is a double rootÞ; λð3Þ ¼ u�a;

ð2Þ
with the corresponding left and right eigenvectors

Lð1Þ ¼ ð0;ρa;1;0Þ; Rð1Þ ¼ ð1=ð2a2Þ;1=ð2ρaÞ;1=2;0Þtr ;
Lð2;1Þ ¼ ð�a2;0;1;0Þ; Rð2;1Þ ¼ ð�1=a2;0;0;0Þtr ;
Lð2;2Þ ¼ ð0;0;0;1Þ; Rð2;2Þ ¼ ð0;0;0;1Þtr ;
Lð3Þ ¼ ð0; �ρa;1;0Þ; Rð3Þ ¼ ð1=ð2a2Þ; �1=ð2ρaÞ;1=2;0Þtr ; ð3Þ

where a¼ γp
ρð1�bρÞ

� �1
2 is the frozen speed of sound. Since, the

multiplicity of the eigenvalue λð2Þ ¼ u is 2, there exists a char-
acteristic shock propagating with the speed V¼u. Using the fact
that across a characteristic shock, no mass flow takes place, the
Rankine–Hugoniot conditions across this shock are given by
½u� ¼ 0, ½p� ¼ 0, ½ρ� ¼ ζ, ½σ� ¼ η where ζ and η are functions of t.
Here, ½X� ¼ X�Xn denotes the jump in X across the characteristic
shock where Xn and X are the values just ahead of the shock and
behind the shock, respectively. Multiplying (1) by eigenvectors

Lð2;1Þ and Lð2;2Þ; respectively, and then on forming the jumps across
the characteristic shock, we get the evolutionary law for ζ and η

L
d½U�
dt

þ½L�dUn

dt
¼ L½f �þ½L�f n; ð4Þ

where d
dt ¼ ∂

∂tþu ∂
∂x denotes the material derivative following the

shock. Now, using (1) and (3) in (4) we obtain the following
transport equations for the quantities ζ and η

dζ
dt

¼ �ζ uxþmu
x

� � 1�bð2ρ�ζÞ
1�bρ

� �
þðγ�1Þðρ�ζÞð1�bðρ�ζÞÞ

γpτ

� ζ σ0�
cp0ð1�bρ0Þ

ρ0
�σþη�cpb

� �
�ρη

� �
;

dη
dt

¼ �1
τ

ηþcpζð1�2bρÞ
ρðρ�ζÞ

� �
: ð5Þ

2.1. Particular case

Let us consider the case exhibiting the space–time dependence
when the flow variables u;ρ; p;σ behind the characteristic shock
are given by

uðx; tÞ ¼ kðtÞx; ρ¼ ρðtÞ; p¼ pðtÞ; σ ¼ σðtÞ: ð6Þ
In this case the particle velocity exhibits linear dependence on x
and such a state can be visualized in terms of an atmosphere filled
with a gas which has spatially uniform pressure variation on
account of the particle motion and the spatially uniform relaxation
rate [29–31]. This type of velocity distribution is useful in mod-
elling the free expansion of polytropic gasses [29].

Using (6) in equations ð1Þ1 and ð1Þ2 we get the following forms
of flow parameters:

ρ¼ ρ0ð1þðt�t0Þk0Þ�ðmþ1Þ; kðtÞ ¼ k0=ð1þðt�t0Þk0Þ; ð7Þ
whereas equations ð1Þ3 and ð1Þ4 lead to the following system of
ordinary differential equations in p and σ

dp
dt

þ γðmþ1Þk
1�bρ

þðγ�1Þcð1�bρÞ
τ

� �
pþðγ�1Þρ

τ
σ0�σ�cp0ð1�bρ0Þ

ρ0

� �
¼ 0;

dσ
dt

�cpð1�bρÞ
ρτ

þ1
τ

σ�σ0þ
cp0ð1�bρ0Þ

ρ0

� �
¼ 0; ð8Þ

where k0 and ρ0 corresponds to the initial reference state. Using
the dimensionless variables

~ζ ¼ ζ=ρ0; ~ρ ¼ ρ=ρ0; ~p ¼ p=p0; ~η ¼ ηρ0=p0; ~σ ¼ σρ0=p0;

~t ¼ t=t0; ~τ ¼ τ=t0; ~k ¼ kt0; ~k0 ¼ k0t0; ~b ¼ bρ0; ð9Þ
and then suppressing the tilde sign, we can write Eq. (5) in the
following form:

dζ
dt

¼ �ðmþ1Þkζ 1�bð2ρ�ζÞ
1�bρ

� �
þðγ�1Þðρ�ζÞð1�bðρ�ζÞÞ

� ðζðσ0�cð1�bÞ�σþη�cpbÞ�ρηÞ
ðγpτÞ ; ð10Þ

dη
dt

¼ �1
τ

ηþcpζð1�2bρÞ
ρðρ�ζÞ

� �
:

Also, Eqs. (8) in dimensionless form are given by

dp
dt

þ γðmþ1Þk
1�bρ

þðγ�1Þcð1�bρÞ
τ

� �
pþðγ�1Þρðσ0�cð1�bÞ�σÞ

τ
¼ 0;

dσ
dt

�cpð1�bρÞ
ρτ

þ1
τ
σ�σ0þcð1�bÞð Þ ¼ 0; ð11Þ

where ρ¼ ðk0ðt�1Þþ1Þ�ðmþ1Þ; k¼ k0=ðk0ðt�1Þþ1Þ, with p¼ p0,
σ ¼ σ0, ζ ¼ ζ0 and η¼ η0 as the initial conditions as at t¼1.
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