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a b s t r a c t

In this article, we present a new constitutive model for studying ultrasonic third harmonic generation in
elastic solids. The model is hyperelastic in nature with two parameters characterizing the linear elastic
material response and two other parameters characterizing the nonlinear response. The limiting
response of the model as the nonlinearity parameters tend to zero is shown to be the well-known St
Venant–Kirchhoff model. Also, the symmetric response of the model in tension and compression and its
role in third harmonic generation is shown. Numerical simulations are carried out to study third har-
monic generation in materials characterized by the proposed constitutive model. Predicted third har-
monic guided wave generation reveals an increasing third harmonic content with increasing non-
linearity. On the other hand, the second harmonics are independent of the nonlinearity parameters and
are generated due to the geometric nonlinearity. The feasibility of determining the nonlinearity para-
meters from third harmonic measurements is qualitatively discussed.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear ultrasonic methodologies [1] for damage detection
are widely being researched with the primary aim of being able to
localize and characterize precursors to macro-scale damage. These
methodologies employ ultrasound to probe nonlinearity in the
material response to characterize the damage. Several techniques
like higher harmonic generation [2], Nonlinear elastic wave spec-
troscopy (NEWS) [3–5] and Nonlinear resonant ultrasound spec-
troscopy (NRUS) [6] are developed to detect and characterize
damage not easily discernible with conventional ultrasonic
methodologies. Of these, ultrasonic higher harmonic generation
refers to the generation of higher harmonic frequency components
from the primary wave propagating in the material. This genera-
tion of higher harmonic frequency components caused by the
nonlinear material behavior due to the presence of micro-scale
damage is used to decipher the extent of damage progression in
the material. Second harmonic generation [7] is widely employed
to characterize micro-scale damage in materials, especially metals
subject to degradation from fatigue [2], creep [8], radiation
damage [9], etc. Many such investigations use bulk-waves that
travel in unbounded media to study ultrasonic higher harmonic
generation both from theoretical and experimental standpoints.
However, there is an increasing interest in the use of nonlinear

ultrasonic guided waves [10] and surface waves for early damage
detection.

Theoretical investigations concerning the study of nonlinear
guided wave propagation in plates [11–13] and pipes [14,15] have
been carried out by several researchers. Likewise, numerical stu-
dies [16,17] concerning nonlinear guided wave propagation were
carried out. However, it should be recognized that the constitutive
model used for modeling the nonlinear material behavior in iso-
tropic materials is the same and given by one of the following two
equivalent forms of the elastic strain energy function:

1. Landau–Lifshitz Model:

WðEÞ ¼ 1
2 λðtrðEÞÞ2þμ trðE2Þþ1

3 CðtrðEÞÞ3þB trðEÞtrðE2Þþ1
3 A trðE3Þ

ð1Þ

2. Murnaghan Model:

WðEÞ ¼ 1
2 λðtrðEÞÞ2þμ trðE2Þþ1

3 ðlþ2mÞðtrðEÞÞ3�m trðEÞððtrðEÞÞ2

�trðE2ÞÞþndetðEÞ ð2Þ

Here, E denotes the Lagrangian strain, λ;μ are Lame's constants
while A;B;C are called the third order elastic constants and l;m;n
are called the Murnaghan constants. The constants ðA;B;CÞ and ðl
;m;nÞ are related by l¼ BþC, m¼ 1

2AþB and n¼ A [18]. Both of
these models can be regarded as Taylor series expansions (up to
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third order) of the strain energy function for an isotropic material
about the reference state E¼0. In the context of nonlinear
ultrasonics, the constants ðA;B;CÞ and ðl;m;nÞ can be interpreted
as state variables quantifying the extent of nonlinearity in the
material behavior [19]. It is easy to see that A¼ B¼ C ¼ 0 corre-
sponds to linear elastic material behavior with geometric non-
linearity. It should be emphasized that the above models possess
two main drawbacks with regard to studying nonlinear wave
propagation (both bulk and guided waves) which is of interest to
nondestructive evaluation and characterization of materials. They
are:

1. Due to the third order nature of the Taylor series expansion, the
model can predict only second harmonic generation in materi-
als for primary stress waves having amplitudes of few MPa.
Even in cases with high primary wave amplitudes, second har-
monic content dominates third harmonic generation.

2. Also, the three independent higher order constants ðA;B;CÞ or
ðl;m;nÞ cannot all be determined from higher harmonic gen-
eration measurements as there are only two types of waves
namely longitudinal and shear waves propagating in the
materials.

In fact some of the recent experimental studies [20,21] report the
generation of third harmonics in materials and their use to
characterize material degradation. In this regard, it is worthwhile
to consider developing new models especially for modeling third
harmonic generation in elastic solids. To that end, this article
presents a new constitutive model for studying third harmonic
generation in elastic solids. First, some important aspects of the
constitutive model development along with the salient features of
the constitutive model are discussed. Then we present some
numerical studies pertaining to third harmonic generation in
materials characterized by the new constitutive model. Finally,
conclusions are drawn.

2. Constitutive model

In this section we present the constitutive model and discuss
some important aspects of material behavior depicted by the
model with regard to nonlinear wave propagation. But first we
introduce the notation used in the section. We denote the defor-
mation gradient by F, the displacement gradient by H and the
Lagrangian strain by E. The following relations exist between these
kinematic variables, where I denotes the Identity tensor.

F¼ IþH ð3Þ

E¼ 1
2 ðFTF�IÞ ¼ 1

2 ðHþHTþHTHÞ: ð4Þ

The second Piola–Kirchhoff stress is denoted by ðTRRÞ. For
hyperelastic materials, we denote the strain energy density by W
and we have

TRR ¼ ∂W
∂E

ð5Þ

The constitutive model we propose for studying third harmonic
generation in isotropic materials is given by the strain energy
function

WðEÞ ¼ 1
2α1

e α1λðtrðEÞÞ2ð Þ�1
� �

þ 1
α2

e α2μ trðE2Þð Þ�1
� �

ð6Þ

Here, λ and μ are Lame's constants and α1 and α2 are the non-
linearity parameters as will be evident from the discussion to
follow. The following observations need to be made regarding the
analytical structure of the proposed model (Eq. (6)):

1. Unlike Eqs. (1) and (2), the above strain energy function is
written just in terms of two invariants i.e., trðEÞ and trðE2Þ.

2. The strain energy function is not an explicit Taylor's expansions
i.e., it is not in the polynomial form. However, some interesting
insights can be obtained by considering the Taylor expansion of
the terms in Eq. (6). We illustrate this by considering the Taylor
expansion of the terms in Eq. (6) i.e.,

1
2α1

e α1λ trðEÞð Þ2ð Þ�1
� �

¼ 1
2
λ trðEÞð Þ2þ1

2
α1

2!
λ trðEÞð Þ2

� �2

þ1
2
α2
1

3!
λ trðEÞð Þ2

� �3
þ⋯

1
α2

e α2μtr E2ð Þð Þ�1
� �

¼ μtrðE2Þþα2

2!
μtrðE2Þ

� �2
þα2

2
3!

μtrðE2Þ
� �3

þ⋯:

The first term in each of the above equations corresponds to the
linear elastic material behavior independent of α1 and α2.
Second terms in the expansion are fourth order in E and are
responsible for third harmonic generation. Likewise, the third
term is sixth order in E and is responsible for fifth harmonic
generation, and so on for the other terms. So, the proposed
model can in fact predict all the odd harmonics generated due
to the material nonlinearity. However, our interest is mainly in
third harmonic generation.

The corresponding second Piola–Kirchhoff stress for the proposed
model obtained from Eq. (5) is given by

TRR ¼ λ trðEÞ e α1λðtrðEÞÞ2ð Þ� �
Iþ2μ e α2μtrðE2Þð Þ� �

E: ð7Þ

Next, we discuss some important features of the proposed model
(Eq. (6)).

3. Features of the proposed model

The proposed model has the following important features.

1. St Venant–Kirchhoff model as the limiting case: As mentioned
earlier, the nonlinearity parameters in the constitutive model
(Eq. (6)) represent the extent of micro-scale damage in the
context of nonlinear ultrasonics. Hence, the model is con-
structed under the restriction that the material response is
linear elastic (includes geometric nonlinearity) when the non-
linearity parameters α1-0 and α2-0. In this case, the limiting
strain energy function (from Eq. (6)) as α1-0 and α2-0 is
given by

WlinðEÞ ¼ 1
2 λðtrðEÞÞ2þμ trðE2Þ: ð8Þ

This is the well known St Venant–Kirchhoff model in nonlinear
hyperelasticity.

2. Symmetric Tension–Compression response: It was discussed in
[3,19,22] that the tension–compression asymmetry in the
material response is responsible for even harmonic generation
in elastic materials. In addition, a detailed analysis of such
asymmetric response depicted by Eqs. (1) and (2) was discussed
in [19,22]. Since we are interested in modeling third (odd)
harmonic generation in elastic materials, the proposed model
(Eq. (6)) is conceived under the restriction that its response is
symmetric in tension and compression. For the present discus-
sion this can be stated as WðEÞ ¼Wð�EÞ. Next, we discuss the
material response depicted by the constitutive model in Eq. (6).
We consider the uniaxial stretch deformation given by

x1 ¼ sX1; x2 ¼ X2; x3 ¼ X3

where fxig3i ¼ 1 denote the coordinates in the current configura-
tion and fXig3i ¼ 1 denote the coordinates in the reference
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