
Parametric disorder effects on a subcritical stationary bifurcation

M.W. Limi a,b,n, T.C. Kofane a,b

a Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812 Yaounde, Cameroon
b Centre d'Excellence Africain en Technologies de l'Information et de la Communication (CETIC), University of Yaounde I, P.O. Box 812 Yaounde, Cameroon

a r t i c l e i n f o

Article history:
Received 25 September 2015
Received in revised form
3 March 2016
Accepted 4 March 2016
Available online 14 March 2016

Keywords:
Bifurcation
Phase transitions
Fluid mechanics
Hydrodynamic stabilization

a b s t r a c t

For a spatial modulation of the control parameter which describes, for instance, major effects of a rough
container boundary in Rayleigh–Bénard convection, the threshold value of the bifurcation from a
homogeneous basic state to a spatially periodic state is provided analytically and numerically, taking the
one-dimensional cubic–quintic complex Ginzburg–Landau equation with real coefficients as an example.
Above the threshold, using the Poincaré–Lindstedt expansion, we show that the quintic term affects both
the stationary nonlinear solution and the Nusselt number.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nonequilibrium processes often lead by nature to the formation
of spatial periodic structures developed from a homogeneous state
through the spontaneous breaking of symmetries present in the
system [1,2]. The discovery of these localized patterns or localized
structures in different experiments such as liquid crystals [3], gas
discharge systems [4], chemical reactions [5], fluids [6], granular
media [7], and nonlinear optics [8] has been a motivation for
theoretical work on localized solutions of amplitude equations [2].
The study of amplitude equations, which can be derived in the
vicinity of symmetry-breaking instabilities, has been useful in
order to gain an insight into nonequilibrium phenomena in spa-
tially extended systems [2]. As an example, it is well-known that
reaction–diffusion, formulated in terms of parabolic partial dif-
ferential equations, in the vicinity of a supercritical Hopf bifurca-
tion, are described by the following cubic complex Ginzburg–
Landau (CGL) equation [2]

τ0 ∂~t ~A� v!g :∂ ~x ~A
� �

¼ ε 1þ iað Þ ~Aþξ20 1þ ibð Þ∂2~x ~A�g 1þ icð Þj ~A j 2 ~A; ð1Þ

where τ0 is the relaxation time, ~A is the complex function of time ~t
and space ~x, v!g is the linear group velocity, ε measures in a
dimensionless scale the distance from the threshold of the
instability, i.e., ε¼ R�Rcð Þ=Rc , with R being the control parameter
that carries the system through the threshold at Rc and ξ0 is the

coherence length. The nonlinear cubic coefficient g determines the
amplitude of the pattern as a function of the control parameter ε,
the real parameters b and c characterize linear and nonlinear cubic
dispersions and εa=τ0 is a correction to the Hopf frequency.

In the case of a supercritical bifurcation, higher-order non-
linearities in Eq. (1) can then be neglected sufficiently near the
threshold. If the nonlinear term in Eq. (1) has the opposite sign,
which corresponds to a subcritical bifurcation, higher-order non-
linear terms are usually essential. For example, one needs quintic
terms to saturate the explosive instabilities provided by the cubic
term. Then the cubic–quintic CGL equation, which describes the
large-scale modulations of the bifurcated solutions in the vicinity
of a strongly subcritical Hopf bifurcation can be written as [2]

τ0 ∂~t ~A� v!g :∂ ~x ~A
� �

¼ ε 1þ iað Þ ~Aþξ20 1þ ibð Þ∂2~x ~A�g 1þ icð Þj ~A j 2 ~A�γ 1þ idð Þj ~A j 4 ~A;
ð2Þ

where γ is the nonlinear quintic term and d the nonlinear quintic
dispersion term. The other terms have been defined in Eq. (1). For
instance, the cubic–quintic CGL equation has been analysed as a
model equation to explain the behavior of travelling patterns in
binary fluid convection [9]. Stationary solutions to the continuous
one-dimensional cubic and cubic–quintic CGL equations can fre-
quently be found by using both analytical and numerical methods.
These equations can display interesting and complex dynamics
including coherent structures [2]. One of the fundamental pro-
blems is to check these solutions against their stability, which is
essential from a basic point of view as well as for potential
applications [10]. In fact, the stability of such solutions has been
studied for both the real [11,12] and complex [13,14] Ginzburg–
Landau equations. Different kinds of instability may lead to such
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phenomena as bistability [15], self-oscillations, and the formation
of static or moving patterns [16]. For example, linear stability
analysis can determine the instability domain in parameter space
and predict quantitatively how the amplitude of a modulation
sideband evolves at the onset of the instability. However, such
analysis is based on the linearization around the unperturbed
carrier wave, which is valid only when the amplitude of pertur-
bation is small in comparison with that of the carrier wave. Clearly,
for long-time scales, when the instability is fully developed, the
linear stability analysis fails and the modulated nonlinear plane
waves can evolve into localized excitations. Hence, as is well
known, a prominent instability is the modulation instability,
which is the outcome of interplay between nonlinearity and dis-
persive effects. It is a symmetry-breaking instability so that a small
perturbation on top of a constant amplitude background experi-
ences exponential growth and this leads to wave breakup in either
space or time. Since this disintegration typically occurs in the same
parameter region where bright solitons are observed, modula-
tional instability is considered to some extent, a precursor to
soliton formation [17–21].

Besides the modulational instability, the Eckhaus instability
which is responsible for partial wavelength selection in one-
dimensional systems, can lead to spatio-temporal complexity
[22]. Eckhaus [22] has shown that, for negative values of a control
parameter ε, the only solution is the uniform or trivial state. At
ε¼ 0, the trivial solution loses stability to a periodic pattern of
wavenumber kc, that is of functional form eikcx. At a slightly higher
value of the control parameter, the trivial state is unstable to all
periodic patterns eikx whose wavenumber satisfies k�kcð Þ2rε.
However, these periodic solutions are themselves unstable, unless
k falls in the smaller range k�kcð Þ2r1

3ε, a parabolic region in the
k; εð Þ plane bounded on both sides by the unstable regions called
“Eckhaus bands” [22]. The Eckhaus instability for travelling waves
has been analysed in diverse convection problems, either experi-
mentally [23–26], numerically or theoretically [24,27–31]. For
example, two experimental papers have been devoted to the
determination of the Eckhaus stability boundaries of travelling
waves in binary fluid convection [23–26]. Other theoretical and
numerical works have likewise considered the stability of exten-
ded pattern in binary fluid convection [30,31].

As is well known, spatial modulation leads for instance to a
shift of the threshold [32]. In the special cases of the real Ginz-
burg–Landau equation with the sinusoidally modulated control
parameter, it is found that the band of stable wave vectors is
always reduced, with lower modulation frequencies giving greater
reduction [32]. In general, temporal modulation may shift the
threshold for the onset of the primary instability [33] can lead to
pattern selection [34], and, in the presence of noise, can affect
transitions between attractors [35]. Very recently, Bhadauria and
Kiran [36] have shown that the dynamics of a weakly nonlinear
oscillatory convection of viscoelastic fluid layer under gravity
modulation is governed by a complex nonautonomous Ginzburg–
Landau amplitude equation. In particular, it appears that mod-
ulation has a destabilization effect at low frequencies and a sta-
bilization effect at high frequencies [36].

The main purpose of this article is to go beyond the spatially
periodic contribution to the control parameter on a supercritical
bifurcation from a homogeneous state to a spatially periodic state
[27]. We focus on a subcritical bifurcation, where the cubic–quintic
complex Ginzburg–Landau equation with real coefficients has been
taken as a model equation with a modulated control parameter
ε-εþM xð Þ. Then, by using the Poincaré–Lindstedt expansion, we
show how, above the threshold, the quintic term has profound
consequences on the stationary nonlinear solution as well as on the
Nusselt number. In particular, the slope of the Nusselt number at

the threshold decreases with increasing values of the square of the
periodic spatial modulation amplitude, while the curvature of the
Nusselt number also at the threshold increases with increasing
values of the square of the periodic spatial modulation amplitude.

The paper is organized as follows. In Section 2, we introduce the
model equation. The effects of the modulation on the threshold is
calculated by using a perturbation method. The stationary nonlinear
behavior of solutions is investigated by the Poincaré–Lindstedt
expansion in Section 3. Next, the analytical predictions are compared
with direct numerical simulations. Finally, Section 4 concludes
the paper.

2. Model equation and the Poincaré–Lindstedt expansion
theory

Let us write down the cubic–quintic CGL equation with real
coefficients

τ0∂tA¼ εþM xð Þþξ20∂
2
x

h i
A�g jAj 2A�γ jAj 4A: ð3Þ

This model is often employed in the description of patterns
observed in Rayleigh–Bénard convection and pattern-forming
systems in which Eq. (3) occurs naturally [2,21].

We assume that γ40; ξ2040; g40. The parameter γ40 can
be computed explicitly from the underlying system. M(x) char-
acterizes hydrodynamic systems with rough container boundaries
or macroscopic porosity.

To a linear part of the real cubic–quintic Ginzburg–Landau
equation, our results have common features with those reported
by Hammele et al. [32]. For example, in the absence of modula-
tions, the neutral curve, which provides an expression for the
control parameter ε qð Þ as a function of the wave number q, has a
parabolic shape ε0 qð Þ ¼ ξ20q

2, which takes its minimum at q¼0,
with the critical value εc ¼ ε0 q¼ 0ð Þ ¼ 0. In the presence of mod-
ulations, the threshold is always negative, that is, εco0, and lower
than for the unmodulated system [32]. For the harmonic mod-
ulation M xð Þ ¼ 2η ~G cos Qxð Þ, where η is a small parameter, which
will be considered through this paper, the analytical formula for

the threshold εc, is ε 2ð Þ
c ¼ �2 ~G

2
=ξ20Q

2 [32], where G¼ η ~G is the
amplitude modulation and Q is the wave number.

It is well known that there exists no general methodology to the
integration of nonlinear ordinary differential equations, which,
however, are the most important. Accordingly, numerous approa-
ches for constructing approximate analytical solutions, most of
which are perturbation techniques, have been developed [37].
These perturbation methods involve the expansion of a solution to a
nonlinear ordinary differential equation in a power series in a so-
called perturbation parameter. They include the Lindstedt–Poincaré
(LP) method [37], the modified Lindstedt–Poincaré (LP) method
[38], the Krylov–Bogoliubov–Mitropolsky (KBM) method [39], the
multiple scales method [40] and the linearized harmonic balance
method [41]. Recently, Yamgoue and Kofane have proposed a
method consisting of a combination of the classical KBM method
and of the modified LP method which provides high accurate result
for undamped oscillations [42].

To describe the stationary nonlinear solutions exhibited by Eq.
(3), we assume that the control parameter ε has large values than
the amplitude of the modulation M(x). In such condition of para-
metric modulations, the effects related toM(x) become small and a
perturbation expansion, which is valid immediately above the
threshold, is possible. We introduce a small parameter λ that
measures the distance from εc η

� �
and the small amplitude of A

close to threshold. We begin by assuming an expansion for the
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