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a b s t r a c t

A direct approach is used to solve the Riemann problem for a quasilinear hyperbolic system of equations
governing the one dimensional unsteady planar flow of an isentropic, inviscid compressible fluid in the
presence of dust particles. The elementary wave solutions of the Riemann problem, that is, shock waves,
rarefaction waves and contact discontinuities are derived and their properties are discussed for a dusty
gas. The generalised Riemann invariants are used to find the solution between rarefaction wave and the
contact discontinuity and also inside rarefaction fan. Unlike the ordinary gasdynamic case, the solution
inside the rarefaction waves in dusty gas cannot be obtained directly and explicitly; indeed, it requires an
extra iteration procedure. Although the case of dusty gas is more complex than the ordinary gas dy-
namics case, all the parallel results for compressive waves remain identical. We also compare/contrast
the nature of the solution in an ordinary gasdynamics and the dusty gas flow case.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In gasdynamics, Riemann problem is an initial value problem
for the system of one dimensional Euler equations supplemented
by a discontinuous initial data. Its solution consists of three waves,
with the middle wave as a contact discontinuity and the other two
waves are shock or rarefaction waves depending upon the initial
data. Also it gives us an idea of the wave structure of a system of
hyperbolic partial differential equations. In recent decades solu-
tion of the Riemann problem for the Euler equations of ordinary
gasdynamics has been analysed extensively. Lax [1] solved the
Riemann problem by considering the difference between initial
data, ‖ − ‖V VL R , sufficiently small, where V VandL R are vectors of
conserved variables at constant states separated by a discontinuity.
Smoller [2] presented a solution of the Riemann problem for an
extended class of hyperbolic systems with V VandL R to be arbi-
trary constant vectors. Glimm [3] used the solutions of Riemann
problem in construction of a solution to the general initial value
problem using the random choice method. Godunov [4] and
Chorin [5] has proposed the exact solution of the Riemann pro-
blem, however, Smoller [6] has proposed a different approach to
determine the exact solution. Liu [7] solved the Riemann problem
for general system of conservation laws subject to entropy con-
dition. Toro [8,9] presented a Riemann solver for the exact solution
of the Riemann problem for ideal and covolume gases. Using the
solution of the Riemann problem, Godunov [10] presented a

numerical scheme for the solution of a nonlinear system of hy-
perbolic conservation laws. As the Riemann problem does not
admit a solution in closed form, even for ideal gas, many authors,
such as Godunov [4], Chorin [5], Smoller [6], Gottlieb and Groth
[11], Quartapelle et al. [12] and Toro [13], among several others,
developed iterative methods for the solution to determine the
flow field. Menikoff and Plohr [14] studied the Riemann problem
for fluid flow of real materials with arbitrary equation of state,
subject to the physical requirements of thermodynamics like
phase transition. Recently Shekhar and Sharma [15,16], Singh and
Singh [17] presented the solution of Riemann problem for one
dimensional magnetogasdynamics flow. Gupta and Singh [18]
used random choice method for the solution of dam break pro-
blem which is an example of Riemann problem for shallow water
equations. A detailed discussion on the Riemann problem can be
found in the books Smoller [6], Toro [13], Li [19], Dafermos [20],
Bressan [21] and LeVeque [22]. In the case of Euler equations
Riemann problem contains the shock tube problem [23]. To de-
termine the exact closed form solution to the Riemann problem for
the Euler equations is still an open problem.

The study of Riemann problem for the fluid flow containing
solid particles is a subject of great interest both frommathematical
and physical point of view due to its applications such as in un-
derground explosions [24], interstellar masses [25] and explosive
volcanic eruptions [26] etc. Dusty gas is a mixture of gas and small
solid particles where solid particles occupy less than 5% of total
volume. When the speed of fluid is very high, the small solid
particles behave like a pseudo fluid [27]. Miura and Glass [28]
studied the flow resulting from the passage of a shock wave
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through a dusty-gas layer. The basics of gas particle flow can be
found in [29]. The dynamical behaviour of a fluid is governed by
the principle of conservation of mass, momentum and energy.
Here we consider a single fluid model for dusty gas. The paper
aims to provide an approximate analytical solution to the Riemann
problem for the one-dimensional, time-dependent Euler equations
for dusty gas flow. In case both external waves are rarefaction
waves then it might create vacuum in the solution of Riemann
problem depending upon the initial data. Using the Riemann sol-
ver of Toro [13] the non-vacuum solutions are determined, which
is obtained if the pressure positivity condition is satisfied. It is also
assessed as to how the presence of dust particles influences the
solution across the shock wave, rarefaction wave and contact
discontinuity.

2. Basic equations

The governing equations describing a planar flow of a dusty gas
mixture obeying the equation of state of Mie Grüneisen type

ρ= ( − ) ( − ) ( )p k RT Z1 / 1 , 1p

are given as [27–30]
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where v is the particle velocity along x-axis, t is the time, ρ is the
density, p is the pressure, T is the temperature and R is the gas
constant. The entity =Z V V/sp g is the volume fraction and

=k m m/p sp g is the mass fraction of the solid particles in the mix-
ture where msp and Vsp are the total mass and volumetric extension
of the solid particles and Vg and mg are the total volume and total
mass of the mixture respectively. The quantity

( )Γ θρ ρ= (( − ) ) ( )c p/ 1 , 3
1/2

is the equilibrium speed of sound with

Γ γ λβ λβγ λ β γ= ( + ) ( + ) = ( − ) = = ( )k k c c c c1 / 1 , / 1 , / , / . 4p p sp p p v

Here csp is the specific heat of the solid particles, cp the specific
heat of the gas at constant pressure, and cv the specific heat of the
gas at constant volume. The relation between the entities
Z kand p is given by θρ=Z , θ ρ= k /p sp, with ρsp as the species
density of the solid particles.

The internal energy per unit mass of the mixture is given as

Γ ρ= ( − ) (( − ) ) ( )e Z p1 / 1 . 5

3. The Riemann problem and generalized Riemann invariants

The system of governing Eq. (2) along with (5) can be written in
conservation form as

ρ

ρ

ρ

ρ

+ ( ) =

= ( ) = +

( + ) ( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎫

⎬
⎪⎪⎪

⎭

⎪⎪⎪

V F V

V v

E

F V

v

v p

v E p

0,

, ,

6

t x

2

where ρ ρ= +E e v /22 .
The initial conditions for the Riemann problem are
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where −∞ < < ∞ >x t, 0. We can take x to vary in a finite in-
terval [ ]x x,L R around the point =x 0. In the solution of Riemann
problem, ρ= ( )U v p, , T is taken as vector of primitive variables.
The initial data of Riemann Problem (6)–(7) consists of two con-
stant states, which are ρ= ( )U v p, ,L L L L to the left of =x 0 and

ρ= ( )U v p, ,R R R R to the right of =x 0, separated by a discontinuity
at =x 0. Physically, with reference to Euler equations, the shock-
tube problem may be generalized as Riemann problem consisting
of two stationary gases ( = = )v v 0L R in a tube separated by a dia-
phragm. When the diaphragm is broken down suddenly it pro-
duces a nearly centred wave system consisting of a rarefaction
wave, a contact discontinuity and a shock wave.

The hyperbolic system of Eq. (6) admits the following family of
characteristics:

= − = = + ( )dx dt v c dx dt v dx dt v c/ , / , / . 8

The family of characteristics given by second equation of (8)
represents the particle path while those given by first and third
represent the wave propagating in the negative and positive di-
rection along x-axis, respectively. These three waves correspond-
ing to Eq. (8) separate four constant states from left to right

* *V V V V, , andL L R R. The unknown star region between the left and
right waves is divided by the middle wave into two sub regions
star left ( *)VL and star right ( *)VR .

From the eigen structure of the Euler equations it can be easily
seen that the middle wave is always a contact discontinuity while
the left and right (nonlinear) waves are either rarefaction or shock
waves. Thus according to the type of non-linear waves, there can
be four possible wave patterns.

It can also be seen that both pressure *p and particle velocity *v
are constant in the star region. Our solution procedure makes use
of the constancy of pressure and velocity in the star region [13].
For the isentropic case, we can replace the third equation by the
entropy equation

+ =S vS 0.t x

Then the system (6), can be written as
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The eigenvalues of the above system are
λ λ λ= − = = +v c v v c, , ,1 2 3

and the corresponding right eigenvectors are
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Across the wave associated with λ = −v c1 , we have

ρ
ρ

=
−

=d dv
c

dS
1 / 0

,

which gives the relations

ρ ρ+ ( ) = =dv c d dS/ 0 and 0.

i.e., ∫ ρ ρ+ ( ) = =v c d S/ constant and constant.
Similarly, across the λ = +v c3 , wave we have

∫ ρ ρ− ( ) = =v c d S/ constant and constant, which are the gen-
eralized Riemann invariants for the system of Eq. (6).

4. Equation for pressure and velocity

To compute the pressure p, velocity v in the star region we

R.K. Gupta et al. / International Journal of Non-Linear Mechanics 82 (2016) 83–9284



Download English Version:

https://daneshyari.com/en/article/784801

Download Persian Version:

https://daneshyari.com/article/784801

Daneshyari.com

https://daneshyari.com/en/article/784801
https://daneshyari.com/article/784801
https://daneshyari.com

