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a b s t r a c t

A phase transition model for porous media in consolidation is studied. The model is able to describe the
phenomenon of fluid-segregation during the consolidation process, i.e., the coexistence of two phases
differing on fluid content inside the porous medium under static load. Considering pure Darcy dissipa-
tion, the dynamics is described by a Cahn–Hilliard-like system of partial differential equations (PDE). The
goal is to study the dynamics of the formation of stationary fluid-rich bubbles. The evolution of the strain
and fluid density profiles of the porous medium is analysed in two physical situations: fluid free to flow
through the boundaries of the medium and fluid flow prevented at one of the two boundaries. Moreover,
an analytic result on the position of the interface between the two phases is provided.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the context of soil consolidation, one can consider the pro-
blem of fluid-segregation. Terzaghi's and Biot's theories [1–3] ad-
mit only one stationary state. On the other hand the so-called
Mandel–Cryer effect, see [4,5], is capable to predict fluid-segre-
gation for special geometries of the porous material and for short-
time only.

In the recent literature an extension of the classical Biot theory
has been formulated via a non-linear poromechanical model
within the framework of second gradient theories [6–9]. This
model is able to describe the occurrence of a second stationary
state richer in fluid. Thus, fluid-segregation is described by con-
sidering a kind of phase transition.

The model in [6–9] is based on a quartic energy potential, de-
pending on the strain ε and the variation of the fluid mass density
m. This potential is an extension to that of Biot [2] and, beside the
new fluid-rich phase, it provides the same Biot's standard phase.
The dissipation process which characterizes the dynamics of
consolidation is described considering a pure Darcy dissipation
rather than a pure Stokes dissipation. It is possible to prove that
Darcy dissipation implies the behaviour of the porous system to be
governed by a kind of Cahn–Hilliard set of partial differential
equations (PDE), whilst pure Stokes dissipation yields a kind of
Allen–Cahn set of equations [9]. The effect of the external world on
the consolidating porous medium can be coded into the boundary
conditions of the PDE problem describing the evolution of the

system. The main mathematical difference between the two PDE
cases is that the Allen–Cahn-like equation is a second-order PDE,
while the Cahn–Hilliard equation a fourth-order one. Thus, in the
latter case two additional boundary conditions have to be
prescribed.

Here we focus on the effects of an impermeable wall on the
consolidation process. The main appropriate equation in this
context is the Cahn–Hilliard one; in fact in this case we can pre-
scribe boundary conditions on the chemical-potential or on its
derivative (seepage velocity), while in the Allen–Cahn case, being
this choice impossible, the chemical potential is fixed to be zero at
the boundaries, thus letting the fluid be free to flow.

In [10], as an extension to the model [6–9], the authors in-
troduced an impermeable wall in one of the boundaries; in order
to obtain the fluid-segregation inside the porous medium, the
fluid-poor and the fluid-rich phases at the boundaries of the
medium itself were prescribed via Dirichlet boundary conditions.
The numerical analysis performed there allowed to describe how
the segregation occurs: independently of the presence of the wall,
the dynamics is divided into two steps, the formation of the in-
terfaces and the motion towards the stationary profile.

In the present work we discuss the effects of the impermeable
wall by choosing a set of Neumann homogeneous boundary con-
ditions. We find that in the case of impermeable wall the dynamics
ends with the formation of an interface between the fluid-poor
and the fluid-rich phases, while the dynamics without the wall
reaches the standard homogeneous Biot phase [2] mentioned
above. Regarding the study of the stationary problem, we are able
to prove analytically that the position of the interface in this case
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of Neumann homogeneous boundary conditions is the same as the
Dirichlet case, a result firstly discussed in [11]. For a detailed dis-
cussion regarding the choice of these boundary conditions we
refer to Section 2.5.

The paper is organized as follows. In Section 2 we summarize
the model in [6–9] and we discuss the physical meaning of the
boundary conditions under consideration. In Section 3 we discuss
numerical simulations of the stationary problem and we prove an
analytic result regarding the position of the interface between the
two phases. In Section 4 we discuss the dynamical problem,
pointing out the role of the impermeable wall in one of the
boundaries of the porous material. Finally, in Section 5 we sum-
marize the main results of this work.

2. The model

In this section we summarize the model in [6–9] with the ex-
tension made in [10]. Moreover we present a discussion on the
meaning of the boundary conditions taken into account and we
apply the model to a special choice of fourth-order overall po-
tential energy, see Section 2.4.

2.1. Equations of motion

We summarize the one dimensional poromechanical model
introduced in [9], where the authors have derived the equations of
motion by using a variational approach much similar to that de-
veloped in [12]; for more details we refer to [9].

Let ≔[ℓ ℓ ] ⊂ B ,s 1 2 , with ℓ ℓ ∈ ,1 2 , and ≔Bf be the reference
configurations for the solid and fluid components, see [13]. The
solid placement χ × → B:s s is a C2 function such that the map
χ (· )t,s , associating to each ∈X Bs s the position occupied at time t
by the particle labelled by Xs in the reference configuration Bs, is a
C2-diffeomorphism. The fluid placement map χ × → B:f f is
defined analogously. The current configuration χ≔ ( )B B t,t s s at time t
is the set of positions of the superposed solid and fluid particles.

Consider the C2 function ϕ × →B B: s f such that ϕ ( )X t,s is the
fluid particle that at time t occupies the same position of the solid
particle Xs; assume, also, that ϕ (· )t, is a C2-diffeomorphism
mapping univocally a solid particle into a fluid one. The three
fields χs, χf , and ϕ are not at all independent.1

The Lagrangian velocities are the two maps × →α α  u B: de-
fined by setting χ( )≔∂ ∂α α αu X t t, / for any ∈α αX B , where α = s, f . We
also consider the Eulerian velocities × →α  v B: t associating with
each point ∈x Bt and for each time ∈ t the velocities of the solid
and fluid particles occupying the place x at time t; more precisely
we set χ( )≔ ( ( ) )α α α

−v x t u x t t, , ,1 .
Since the reference configuration Bs of the solid component is

known a priori, we express the dynamical observables in terms of
the fields χs and ϕ which are defined on Bs.

Assume that the effect of the internal forces exchanged by the
solid and fluid particles and that of the conservative external fields
can be described via a potential energy density Φ depending on
the kinematic fields χs and ϕ only through the strain and a
properly normalized fluid mass density [9], i.e.,

ε χ

ϕ ϕ
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where ϱ → B:0,f f is a fluid reference density. In other words, we
assume that the potential energy density Φ is a function of the
fields mf and ε and on their space derivative ′mf and ε′.

By a standard variational computation, see [9, equation (24)],
one gets the equation of motion. In this framework, we are in-
terested in the geometrically linearized version of such equations:
we assume ϱ0,f to be constant and introduce the displacement fields

( )u X t,s and ( )w X t,s by setting

χ ϕ( ) = + ( ) ( ) = + ( ) ( )X t X u X t X t X w X t, , and , , 2s s s s s s s

for any ∈X Bs s and ∈ t . We then assume that u and w are small,
together with their space and time derivatives, and write

ε= ϱ ( + ′) ≔ − ϱ = ϱ ′ ≈ ′ ( )m w m m w u1 , , , 3f 0,f f 0,f 0,f

where E means that all the terms of order larger than one have
been neglected.

We have introduced above the field m. In the following we shall
imagine Φ as a function of εm, and ε′ ′m and the equations of
motion and the boundary conditions will be written in terms of
these fields. We get the equations of motion [10]
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and the associated boundary conditions that are compatible with
the choices of Dirichlet and Neumann boundary conditions:
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Recalling that in our approximation = ϱ ′m w0,f , see the second
among Eqs. (3), we have that Eqs. (4) are evolution equations for
the fields m and ε.

The second between the equations of motion (4), thanks to a
suitable choice of Φ, see Section 2.4, will become a Cahn–Hilliard-
like equation for the field m with driving field still depending
parametrically on ε [9].

2.2. The zero chemical potential problem

A set of boundary conditions implying that (5) are satisfied is
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where the notation above means that the functions in brackets are
evaluated both in ℓ1 and ℓ2. With this choice it is possible to fix
the boundary conditions directly on fields m and ε (and
derivatives).

The first equation (6) is the additional boundary condition due
to the presence of the gradient terms in the potential energy
density Φ. This equation specifies essential boundary conditions
on the derivatives of the displacement fields or natural boundary
conditions on the so-called double forces, see [14] and the next
Section 2.5. The generalized essential boundary conditions can be
read as a prescription on the derivative of the independent fields
χs and ϕ, see Eq. (1); whilst the extended natural boundary con-
ditions prescribe, on one hand, the additional forces which the
solid continuum is able to balance at the boundary and, on the
other, the wetting properties of the fluid which fills the pores [15].

The second equation (6) provides natural boundary conditions
prescribing the chemical potential of the fluid, so that the fluid is
free to flow through both the two boundaries. For a more detailed
discussion on this boundary condition see [10,16].

Finally, we call the zero chemical potential problem the PDE
problem given by (4) and (6).

2.3. The one-side impermeable problem

A very interesting situation in applications is the one in which
1 Indeed, by definition, we immediately have that χ ϕ χ( ( ) ) = ( )X t t X t, , ,f s s s for

any ∈X Bs s and ∈ t .
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