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a b s t r a c t

We analyze experimental thermophysical properties of liquid metals and alloy melts and show that the
kinematic viscosity is essentially dependent on temperature, whereas the density, thermal conductivity,
and specific heat capacity are only weakly dependent on temperature. Based on this fact, we formulate a
mathematical model for non-isothermal laminar flows of liquid metals and melts with variable viscosity.
We derive asymptotic equations of motion for low Prandtl numbers (liquid metals are characterized by
PrC10�2⪡1) and different Reynolds numbers and obtain a number of exact and approximate analytical
solutions expressible in elementary functions or representable in closed form. We look at a few specific
fluid and thermodynamic problems and show that the dependence of viscosity on temperature sig-
nificantly affects the drag coefficient in non-isothermal flows as compared to isothermal flows. We
outline a few semi-empirical approximations of νðTÞ and show that the power-law formula ν¼ ν0ðT0=TÞk
provides a very good accuracy for several liquid metals (including sodium and mercury). The asymptotic
models, equations and formulas presented in the paper can be used to state and solve new non-
isothermal hydrodynamic problems for liquid metal and melt flows.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Classical mathematical models of fluid dynamics. Exact solutions

The classical mathematical models describing laminar flows of
viscous incompressible fluids are based on the Navier–Stokes
equations and boundary layer equations. These equations as well
as various statements of problems and their solutions are dis-
cussed in numerous studies, for example, [1–10].

Exact solutions to the Navier–Stokes, boundary layer, and
related equations contribute to better understanding of qualitative
features of steady and unsteady fluid flows at large Reynolds
numbers; these features include stability, non-uniqueness, spatial
localization, blow-up regimes, and others.

Exact solutions with significant functional arbitrariness are of
particular interest because they may be used as test problems to
ensure efficient estimates of the domain of applicability and
accuracy of numeric, asymptotic, and approximate analytical
methods for solving suitable non-linear hydrodynamic-type PDEs
as well as certain model problems.

Steady and unsteady solutions to two- and three-dimensional
Navier–Stokes equations can be found in [2,5,7,10–21,23,22]. For
models and exact solutions to hyperbolic and differential–differ-
ence Navier–Stokes equations, see [24–27].

For exact solutions to steady and unsteady plane boundary-
layer equations, see [5,7,20,21,23,28–41]. The studies [21,38,41–
46] present some exact solutions and reductions of axisymmetric
boundary-layer equations.

1.2. Convective heat and mass transfer equations. Analytical
solutions

The classical mathematical models describing convective heat
and mass transfer in a fluid flow are based on convective heat and
mass transfer equations. These equations as well as various
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statements of problems and solution methods are detailed, for
example, in [5,7,47–62].

Most studies assume that fluid viscosity is independent of
temperature. As a result, the overwhelming majority of convective
heat and mass transfer problems are characterized by passive heat
and mass transfer equations,1 in the sense that these equations do
not affect the fluid velocity field, while being dependent on this
velocity field due to convective terms of the form ðu � ∇ÞT . Con-
sequently, the solution of these equations splits into two con-
secutive stages: (i) solving the fluid dynamic component of the
problem (to determine the velocity field) followed by (ii) solving
the thermal and diffusion components of the problem with the
velocity field already known. Diffusion problems for ordinary
liquids like water and viscous liquids like glycerol and various oils
are characterized by large Schmidt numbers ðScC103–106Þ. It
follows that, starting from fairly small Reynolds numbers, Re≳0:1,
the corresponding diffusion Péclet numbers, Pe¼Re Sc, will be
large. In these cases, the diffusion boundary-layer approximation
can be used; it is based on the linearization of the velocity field
near the liquid–solid or liquid–liquid interface and allows one to
obtain the concentration field in closed analytical form (e.g., see
[51,54,58,62]).

There are a number of studies that looked at coupled hydro-
dynamic and heat transfer problems and considered viscous dis-
sipation or/and the dependence of viscosity on temperature. For
example, see [5,63–73]. Qualitative results of these studies are
discussed below in Remarks 4 and 5.

1.3. Non-isothermal flows of liquid metals and melts

Liquid metals and alloy melts are characterized by small
Prandtl numbers and essential dependence of the kinematic
viscosity on temperature. These properties must be taken into
account in setting and solving relevant problems.

The main objectives of the present study include:

� analyze qualitatively the physical properties of liquid metals
and melts in a wide temperature range;

� assess the significant and insignificant factors affecting the
modelling of non-isothermal flows of liquid metals;

� discuss semi-empirical dependences of the kinematic viscosities
on temperature;

� formulate an appropriate mathematical model describing non-
isothermal flows of liquid metals;

� obtain simplified asymptotic models at low Prandtl numbers
and different Reynolds numbers;

� solve selected problems on the fluid and thermodynamics of
liquid metals;

� construct exact and approximate solutions to the fluid and
thermodynamic equations of liquid metals.

It is noteworthy that one of the important applications of liquid
metals and melts is their usage as coolants at high temperatures,
especially in nuclear power stations (e.g., see [74–81]).

Remark 1. Section 9 of the paper [44] discusses a model problem
on a steady unidirectional flow of a liquid metal past a non-
uniformly heated flat plate at large Reynolds numbers. It shows
that considering the dependence of the kinematic viscosity on

temperature can result in a significant change in the friction drag
coefficient of the plate.

2. Thermophysical properties of liquid metals and melts

2.1. Qualitative features of liquid metals and melts

Below we briefly describe the general physical properties of
liquid metals that will be required in the further statement and
solution of thermal and hydrodynamic problems considering the
changes in the viscosity due to temperature variations. We get the
data from the thermophysical handbooks [82–84]. The following
general facts are essential for further analysis:

1○: The kinematic viscosity, ν, density, ρ, and Prandtl number,
Pr¼ ν=a decrease with increasing temperature, T. The parameter
a¼ λ=ðρcpÞ stands for the thermal diffusivity, with λ denoting the
thermal conductivity and cp the specific heat.

2○: The changes in the density are very small compared to
those in the kinematic viscosity in a wide temperature range
[83,84] and so can be neglected. In particular, the kinematic visc-
osity of sodium changes by 52% as temperature varies from 100 to
200 °C, whereas its density changes by only 2.8%.

3○: For most liquid metals, the changes in the thermal con-
ductivity, λ, and specific heat, cp, are also very small as compared
with those in the kinematic viscosity in a wide temperature range
and so can also be neglected. In particular, the thermal con-
ductivity and specific heat of sodium change by only 5.5% and 4.5%,
respectively, across the same temperature range of 100 to 200 °C.

4○: The Prandtl number is quite small [62,84], varying within
the range 5� 10�3rPrr5� 10�2.

Table 1 lists the values of relevant physical parameters of some
liquid metals at different temperatures, according to the data from
[84] (see also [83]).

It is apparent from the table that the following approximate
relations hold:

Δρ
ρ

C0:1
Δν
ν
;

Δλ
λ

C0:1
Δν
ν
;

Δcp
cp

C0:1
Δν
ν
; ð1Þ

where f ¼ f ðTÞ and Δf ¼ f ðTþΔTÞ� f ðTÞ, with f ¼ ρ; λ; cp.
The above properties of liquid metals and melts are key to the

subsequent mathematical statements of fluid and thermodynamic
problems.

2.2. Approximation of the dependence of the kinematic viscosity on
temperature

In many cases, the temperature dependence of the kinematic
viscosity of liquid metals and melts can be approximated by the
two-parameter Arrhenius type formula (e.g., see [85,86])

ν¼ αeβ=T ; ð2Þ
where α and β are empirical constants and T is thermodynamic
temperature. The modified three-parameter formula ν¼ αeβ=ðTþTnÞ

provides a better approximation in a wide temperature range for
different pressures; see [87]. The study [88] suggested the formula
ν¼ αT1=2eβ=T .

By expanding the exponential function using the method of
[58], one can simplify relation (2) to obtain the following
approximation, which is valid in a narrower temperature range:

ν¼ ν0eγðT0 �TÞ; ð3Þ
where ν0 is the kinematic viscosity at temperature T0 and γ is
some constant (generally dependent on T0). This formula was first
suggested by Reynolds for viscous liquids like olive oil [89] (see
also [90]).

1 Here we do not discuss free thermal convection in fluid. Neither we discuss
Marangoni-type effects, thus assuming the coefficient of surface tension to be
independent of temperature.
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