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a b s t r a c t

In this paper, a study on non-linear buckling and postbuckling behavior of elliptical curved beams is
presented. An isogeometric analysis framework with the use of an arc-length iteration technique is
developed based on the shear deformable theory and accounts for the geometric non-linearity in von
Kármán sense. The proposed method is capable of exactly modeling the geometry of elliptical curved
beams by means of NURBS (non-uniform rational B-splines) basis functions. The solutions of the present
model are validated by comparing with experimental and numerical results of the literature. Numerical
examples are carried out to investigate the effects of different geometric parameters on the buckling and
postbuckling of elliptical curved beams with hinged–hinged, clamped–clamped and clamped–hinged
boundary conditions.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the buckling behavior of curved beams is
very complex since the beam deformations depend on the coupled
equations between tangential and normal displacements and
rotation by curvature effects. Up to the present, a large amount of
work has been devoted to investigations of buckling response for
curved beams. Many researchers including Timoshenko and Gere
[1], Vlasov [2], Simitses [3], Papangelis and Trahair [5], Kang and
Yoo [4], Kim et al. [6] and Attard et al. [7] attempted to obtain
analytical solutions to the critical buckling load of circular curved
beams under uniform radial compressive load. Similar problems
were solved by Kang et al. [8] using differential quadrature
method (DQM) and Yang et al. [9], Yoo and Kang [10], Kim et al.
[11] and Öztürk et al. [12] by employing finite element method
(FEM). In most of their works, the prebuckling that involves the
flexural deformation was not considered. However, Pi and Trahair
[13] showed that the effects of prebuckling deformation in the
normal direction need to be taken into account for shallow circular
curved beams under uniform compression since its relation to the
beam rise is not small. Later, Pi et al. presented a series of studies
[14–17] on non-linear buckling and postbuckling of circular curved
beams carrying uniform radial compression with various geome-
tries and boundary conditions. The non-linear stability of circular
curved beams subjected to a central concentrated load was also
analytically investigated by Bradford et al. [18], Pi et al. [19], and Pi
and Bradford [20–22]. Zhu et al. [23] used the trapezoid method

with Richardson extrapolation enhancement to trace non-linear
equilibrium paths for circular curved beams with different loading
cases. Chandra et al. [24] presented a combined experimental–
computational framework to analyze the non-linear transient
response of clamped shallow circular curved beams and determine
the snap-through boundaries in the parameter space. It should be
noted that in the above-mentionedstudies, the radius of curvature
of curved beams is constant, thus the problems can be simplified
by ignoring the variable curvature effect in integrations. For non-
circular curved beams, Dinnik [25] provided one of the earliest
numerical solutions to the linear buckling of parabolic curved
beams under a uniformly distributed vertical load. The similar
problems were treated by Tadjbakhsh [26], Attard et al. [27] and
Luu et al. [28]. While Tadjbakhsh [26] used the Euler–Bernoulli
assumptions in his research, Attard et al. [27] and Luu et al. [28]
improved their formulations by taking into account the shear
deformation effect. Moon et al. [29], Bradford et al. [30], Cai and
Feng [31], Cai et al. [31,32] and Zhu et al. [33] considered geo-
metric non-linearities in their buckling analyses of parabolic
curved beams under the same loading case with the previously
mentioned studies [25–28]. Chandra et al. [34] investigated
dynamic transitions associated with the snap-through buckling for
sinusoidal curved beams subjected to a sinusoidal distributed load.
Nieh et al. [35] constructed an analytical solution to the buckling
load of elliptical curved beams by incorporating a series of solu-
tions and stiffness matrices when they are applied by a uniformly
distributed vertical load. Both the effects of geometric non-
linearity and shear deformation were neglected in the study of
Niel et al. [35].

Recently, a family of the so-called isogeometric analysis firstly
introduced by Hughes et al. [36] has been seen as a powerful
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computational method. The main goal of isogeometric analysis
(IGA) is to offer a possibility to fulfill the seamless link between
computer aided design (CAD) and finite element analysis (FEA).
The underlying concept of IGA is to utilize basis functions that are
popular in modern CAD software for numerical simulations of
physical phenomena. Among others, non-uniform rational B-
splines have been mostly employed in IGA due to their popular-
ity and their capability to exactly represent the conic sections. In a
recent book, Cottrell et al. [37] explained in detail the isogeometric
concept and presented systematic procedures to apply IGA in
structural analysis and fluid mechanics. Isogeometric finite ele-
ments were proven to have superior computational performances
than the conventional finite elements [38–40]. Isogeometric ana-
lysis has been used to efficiently solve many problems in a wide
range of research areas [28,41–48]. In structural buckling analysis,
conventional finite elements are notoriously sensitive to mesh
distortion and geometric imperfection. The ability of exact geo-
metry simulation with the mesh smoothness lets IGA become an
ideal candidate in solving buckling problems [28,43,49–55].

From the previously cited references, one can note that despite
extensive research for the buckling analysis of circular, parabolic
and sinusoidal curved beams, to the authors' knowledge, Ref. [35]
is the only study reported on the buckling of elliptical curved
beams with lack of a geometric non-linearity in the open litera-
ture. Therefore, our objective is to investigate the buckling and
postbuckling behavior of elliptical curved beams using a NURBS-
based isogeometric analysis framework. The elliptical curved
beams are subjected by a central concentrate vertical load and all
clamped–clamped, hinged–hinged and clamped–hinged boundary
conditions. Governing equations are derived in the framework of
shear deformable curved beam theory and the geometric non-
linearity is accounted for in the von Kármán sense. The geometry
of elliptical curved beams is exactly represented by NURBS and
NURBS basis functions are used in approximating the unknowns.
An arc-length iteration method incorporated with the predictor
criterion proposed by Feng et al. [56,57] is implemented to solve
non-linear equilibrium equations. The present study is validated
by comparing the current results with experimental and numerical
results previously published in the literature for a circular curved
beam and an elliptical curved beam. The influences of geometrical
parameter, slenderness ratio and rise-to-span ratio on the buckling
characteristics of elliptical curved beams are investigated in detail
through extensive parametric studies. It is shown that all bifur-
cation, snap-through and snap-back buckling can occur for ellip-
tical curved beams.

2. Non-linear buckling isogeometric analysis of elliptical
curved beams

In this section, a geometrically non-linear isogeometric for-
mulation is developed for investigating the buckling and post-
buckling behavior of elliptical curved beams. The exact geometry
of elliptical curved beams is represented by NURBS. An arc-length
iteration method is employed to trace possible bifurcation, snap-
through and snap-back buckling phenomena. First, the main fea-
tures of NURBS curve and NURBS basis functions are overviewed.
The details for NURBS-based geometric modeling could be found
in Piegl and Tiller [58] and Cottrell et al. [37].

2.1. A brief review of NURBS

NURBS are derived from B-splines which are piecewise poly-
nomial curves composed of linear combinations of B-spline basis
functions. The primary component of B-spline basis functions is a

knot vector Ξ ¼ ξ1; ξ2;…; ξnþpþ1

h i
which is a set of non-

decreasing real numbers in the interval ½ξ1; ξnþpþ1�. Here, ξiAR

is the ith knot, i is the knot index, i¼ 1;2;…;nþpþ1 , p is the
polynomial order and n is the number of basis functions. If all
knots are equally spaced, the knot vector is called uniform.
Otherwise, it is a non-uniform knot vector. If the first and last
knots are repeated ðpþ1Þ times, it is said to be open. The multi-
plicity of a knot value is the number of times it appears in the knot
vector. The intervals ξ1; ξnþpþ1

h i
and ½ξi; ξiþ1Þ are called a patch

and a knot span, respectively. Based on the knot vector Ξ, B-spline
basis functions Bi;pðξÞ are defined recursively starting with piece-
wise constants ðp¼ 0Þ as follows:

Bi;0ðξÞ ¼
1 if ξirξoξiþ1;

0 otherwise:

(
ð1Þ

For p¼ 1;2;3;…; they are defined by

Bi;pðξÞ ¼
ξ�ξi

ξiþp�ξi
Bi;p�1ðξÞþ

ξiþpþ1�ξ
ξiþpþ1�ξiþ1

Biþ1;p�1ðξÞ: ð2Þ

At a knot of multiplicity k, the B-spline basis functions are Cp�k�
continuous at that knot. In addition, the basis functions are
interpolatory at the ends of the interval and at the knot whose
multiplicity is p (C0�continuous). When p¼1, the B-spline basis
functions are identical to the standard Lagrange linear finite ele-
ment basis functions.

A piecewise polynomial B-spline curve CðξÞ is defined by a
linear combination of B-spline basis functions and coefficients
over the parametric space:

CðξÞ ¼
Xn
i ¼ 1

Bi;pðξÞPi: ð3Þ

The coefficients are points in d-dimensional physical space Rd,
referred to as control points. The control points PiARd, i¼ 1;2;…
;n; construct the control polygon. An example of a B-spline curve
constructed by eight B-spline basis functions of the open, non-
uniform knot vector Ξ ¼ f0;0;0;1;2;3;3;4;5;5;5g is given in Fig. 1.

A rational B-spline curve is defined as follows:

CðξÞ ¼
Xn
i ¼ 1

Bi;p ξ
� �

wiPiPn
î ¼ 1 Bî ;p ξ

� �
wî

¼
Xn
i ¼ 1

Ni;p ξ
� �

Pi; ð4Þ

where wi and Ni;p are weights and rational B-spline basis func-
tions, respectively. If the knot vector is non-uniform, the basis
becomes non-uniform rational B-spline basis functions.

2.2. Weak formulation

An elliptical curved beam governed by the Timoshenko theory
is considered in Fig. 2. The geometry of the curved beam is illu-
strated in a right-handed orthogonal curvilinear coordinate system
(s, r). The s-curvilinear coordinate coincides with the centroidal
axis of the curved beam and κ denotes the curvature (R is the
radius of curvature); u and w are the tangential and normal
(radial) displacements, respectively, at the centroidal axis; θ is the
rotation of the beam cross-section about the out-of-plane axis.
Considering the extensional, flexural and shear deformations, the
von Kármán strain–displacement relations are given by:

ϵ¼ u0 þκwþ1
2 w0 �κuð Þ2 ð5aÞ

χ ¼ θ0 ð5bÞ

γ ¼ θþw0 �κu ð5cÞ
where ϵ and χ are the membrane strain and the curvature strain,
respectively; γ is the transverse shear strain; the superscript
“prime” refers to differentiation with respect to s.

A.-T. Luu, J. Lee / International Journal of Non-Linear Mechanics 82 (2016) 132–143 133



Download English Version:

https://daneshyari.com/en/article/784807

Download Persian Version:

https://daneshyari.com/article/784807

Daneshyari.com

https://daneshyari.com/en/article/784807
https://daneshyari.com/article/784807
https://daneshyari.com

