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a b s t r a c t

By means of a dynamical non-equilibrium temperature we derive a generalized heat-conduction equa-
tion which accounts for non-local, non-linear, and relaxation effects. The dynamical temperature is also
capable to reproduce several enhanced heat equations recently proposed in literature. The heat flux is
supposed to be proportional to the gradient of the dynamical temperature, and the material functions are
allowed to depend on temperature. It is also pointed out that the heat flux cannot assume arbitrary
values, but it is limited from above by a maximum value which ensures that the thermal conductivity
remains positive.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In Classical Irreversible Thermodynamics (CIT) [1] the Fourier
law

qi ¼ �κθ;i ; ð1Þ
relates the heat flux qi both to the gradient of the thermodynamic
non-equilibrium temperature θ and to the temperature-
dependent thermal conductivity κ. Second law of Thermo-
dynamics forces the thermal conductivity to be a positive-definite
function.

For rigid bodies, the combination of Eq. (1) with the local bal-
ance of the energy in the absence of heat supply

ρ _uþqi;i ¼ 0; ð2Þ
with ρ as the mass density and u as the specific internal energy,
provides the evolution equation for the temperature, once u is
expressed as a function of θ by a constitutive equation.

The use of Eq. (1) allows a satisfactory description of heat
conduction in several situations at the macroscopic length scale,
but it is unable to describe accurately the same phenomenon at
nanoscale. In fact, whenever crystalline solids are confined to the
nanometer range, heat transport within them is strongly altered
by several phenomena as, for example, the phonon quantization,
changes in phonon dispersion relation, increased boundary scat-
tering, etc. The behavior of nanodevices is also influenced by non-
linear effects, which lack in the Fourier law. Furthermore, in micro/

nano-devices working at high frequencies, the heat flux has no
enough time to accommodate to the value given by the Fourier
law, so that one has also to take into account the relaxation time of
the heat flux [2–4]. As a consequence, several new heat-transport
theories appeared in literature in the last three decades. Many of
them have been analyzed in Ref. [5], wherein their connection
with different approaches to non-equilibrium thermodynamics
has been pointed out. Here we pursue the previous analysis by
considering the thermomass (TM) theory [6–11], i.e., a recent heat-
conduction theory which in rigid bodies regards the heat as
transported by a gas-like collection flowing through the crystal
lattice.

In the present paper we derive by proper thermodynamical
methods a generalized heat-transport equation, primarily focusing
our attention on the concept of non-equilibrium temperature. The
correct definition of temperature at nanoscale is, in fact, a further
interesting and not yet explored problem [12–14]. The usual
definition of temperature, related to the average energy of a sys-
tem of particles, is valid for systems in (or very close to) equili-
brium, when the time derivative of the average energy is negli-
gible. Once the interest lays in the transport of heat through a
nanosystem, instead, one has to keep in mind that the system is in
very strong non-equilibrium situations.

In Refs. [15–19] both classical and enhanced heat-transport
equations have been obtained by means of a dynamical tem-
perature β which principally differs from θ by a frictional term
which is responsible of the finite speed of propagation of thermal
disturbances. The main differences between β, θ and the local-
equilibrium temperature T are carried out in Ref. [18]. Note further,
that according to the terminology of CIT [1,20,21], β can be also
regarded as an internal state variable [22–24].
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The dynamical temperature has its own evolution equation
which, in the very general case, reads

_β ¼ f Σð Þ; ð3Þ
where f is a regular function defined on the state space Σ. For
instance, if θ and β enter the state space, Eq. (3) can be written as

_β ¼ F θ;β
� �
τR

; ð4Þ

with F a suitable smooth function, and τR a temperature-
dependent relaxation time related to resistive processes of inter-
action among the heat carriers, and the order of magnitude of
which is in the interval 10�12 s;10�9 s

h i
in the case of second-

sound propagation at low temperature [5]. The conditions

∂F
∂θ

Z0;
∂F
∂β

r0; ð5Þ

ensure, respectively, that:

1. in thermodynamic equilibrium, with θ equal to T [13,25], β is a
regular function of T and the order relation r between
different temperatures is preserved;

2. the solutions of Eq. (4) are stable.

In the simplest case the previous conditions are realized by the
following linear evolution equation:

_β ¼ �β�θ
τR

; ð6Þ

which will be generalized in Section 2 in order to take into account
non-local effects.

In Refs. [15,16,18] it is postulated that the heat flux is propor-
tional to the gradient of β by means of the following Fourier-type
heat-conduction law:

qi ¼ �λβ;i
; ð7Þ

where λ denotes the thermal conductivity expressed as a function
of the specific internal energy. The one-to-one relation between θ
and u allows to set a strict relation between the thermal con-
ductivity κ in Eq. (1) and the thermal conductivity λ in Eq. (7),
namely, we have λ uð Þ � κ θ uð Þ� �

. From the positivity of κ θ
� �

, it
follows that the function λ uð Þ is positive definite, too.

Once the evolution equation for β has been derived, different
heat-transport regimes can be described. For instance, whenever
the material functions τR and λ can be considered constant (for
example, when they only show slight changes with the tempera-
ture), the combination of Eqs. (7) and (6) leads to the well-known
Maxwell–Cattaneo equation [18,19]

τR _qiþqi ¼ �λθ;i ; ð8Þ
which provides a satisfactory description of high-frequency ther-
mal waves. Although Eq. (8) is capable to describe relaxation
effects, it does not account for non-linear effects, which may enter
the heat-transport equation both as a temperature dependence in
the material functions, and as the presence of non-linear products
of the temperature gradient (or of the heat flux). These effects,
instead, will be described by our generalized heat equation.

The paper runs as follows.
In Section 2, we develop the aforementioned model by establish-

ing the state space and the evolution equations characterizing the
system at hand. Moreover, we exploit the entropy principle in order to
obtain necessary and sufficient conditions ensuring the compatibility
of the model with second law of thermodynamics [1].

In Section 3, we provide a solution of the system of thermo-
dynamic restrictions found in Section 2, proving so that the model
is physically admissible.

In Section 4, we derive a generalized heat-conduction equation
accounting for non-linear and relaxation effects.

In Section 5 we show that our generalized heat-conduction
equation encompasses the heat-conduction equation of the ther-
momass theory [6–11].

Finally, in Section 6, we discuss the main results through the
prism of the concept of non-equilibrium temperature. After
observing that the heat flux cannot assume arbitrary values, but it
is limited from above by a maximum value which ensures that the
thermal conductivity remains positive, we show that such a limit
value is determined by the thermodynamic absolute temperature
as well as by the dynamical one.

2. Nonlinear gradient-dependent transport law

In this sectionwe postulate a suitable evolution equation for β and
analyze its compatibility with second law of thermodynamics [1].

Before to proceed in this analysis, let us observe that the con-
siderations of previous section suggest that in an equilibrium
system, where the specific internal energy u is a function of the
thermodynamic local-equilibrium absolute temperature T, the use
of both u and β would be redundant. However, out of equilibrium,
where u does not display the same distribution as in equilibrium, β
is a truly independent quantity, not redundant with u. Thus, we
are allowed to consider a rigid heat conductor at rest, character-
ized by the following state space:

Σ ¼ u;β;β;i

n o
;

where, in view of Eq. (7), the further state variable β;i
means that

the heat flux enters the state space. This is in accordance with the
basic tenets of Extended Irreversible Thermodynamics (EIT), a
recent thermodynamic theory in which includes the dissipative
fluxes in the set of the independent thermodynamic variables
[1,12,26].

Then, an evolution equation for β of the form (3) can be pos-
tulated. Here we suppose that

_β ¼ u
σ
�β
τ
þA
2
β;i
β;i

; ð9Þ

wherein σ, τ and A are regular scalar functions of u. Eq. (9), besides
accounting for the possible variations of the different thermo-
physical quantities with respect to the temperature, enhances
Eq. (6) by extending the evolution of β in the realm of weakly non-
local thermodynamics. Hence, if for example, one assumes
τ uð Þ ¼ τR θ

� �
and σ � cvτR with cv being the specific heat at con-

stant volume, then Eq. (9) becomes

_β¼ � β�θð Þ
τR

þA
2
β;iβ;i ; ð10Þ

which is indeed physically superior to Eq. (6) since, according to
Eq. (6) β reduces to θ in non-equilibrium steady states, whereas if
Eq. (10) holds, in steady states θ and β are still related by a partial
differential equation. Thus, Eq. (9) (or, equivalently, Eq. (10))
describes not only the usual aspect of β dependent explicitly on
time, but also a new aspect dependent on its gradient. This feature
is related to the fact that in the presence of a gradient the system is
locally receiving an energy input and it is yielding an energy
output to the nearby regions. This implies a dynamical aspect even
in the steady states, where energy input rate is equal to the energy
output rate.

By means of the constitutive equation (7), Eq. (2) can be
rewritten as

ρ _u�β;k
u;k

∂λ
∂u

�λβ;ik
δik ¼ 0; ð11Þ
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