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a b s t r a c t

Present article examines the three-dimensional flow of upper-convected Maxwell (UCM) fluid over a
radiative bi-directional stretching surface. Novel non-linear Rosseland formula for thermal radiation is
utilized in the formulation of energy equation. The conventional transformations lead to a strongly non-
linear differential system which is treated numerically through Runge–Kutta integration procedure
together with the shooting approach. We found that heat transfer rate from the sheet has inverse as well
as non-linear relationship with wall to ambient temperature ratio. Moreover an increase in viscoelastic
fluid parameter (Deborah number) corresponds to a decrease in the fluid velocity and the boundary layer
thickness.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Wang [1] was probably the first to explore the three-
dimensional flow induced by a bi-directionally stretching sur-
face. He successfully developed a self-similar solution of the three-
dimensional Navier–Stokes equations. Ariel [2] found the series
solution for Wang's problem by using the homotopy perturbation
method (HPM). Liu and Andersson [3] investigated the heat
transfer over a bidirectional stretching sheet with variable thermal
conditions. Homotopy analysis method (HAM) based analytical
study of three-dimensional flow and heat transfer above an
implusively stretching surface was presented by Xu et al. [4]. Sajid
et al. [5] also derived homotopy solutions for three-dimensional
flow of Walters B liquid over a linearly stretching surface. Time-
dependent flow of Maxwell fluid bounded by an unsteady
stretching sheet was addressed by Awais et al. [6]. Khan et al. [7]
discussed the three-dimensional flow and heat transfer caused by
a stretching surface subject to general power-law surface velocity
and temperature distribution. Xu and Pop [8] discussed the impact
of bio-convection on nanofluid flow through a vertical channel
containing gyrotactic microorganisms by optimal homotopy ana-
lysis approach. Very recently, three-dimensional flow of nanofluids

induced by a non-linearly stretching sheet was investigated by
Khan et al. [9]. Revolving flow over a stretching disk with heat
transfer was numerically examined by Turkyilmazoglu [10].

The phenomenon of radiative heat transfer has relevance in
numerous industrial applications including power generation,
combustion applications, nuclear reactor cooling etc. Raptis [11]
investigated a boundary layer flow problem considering thermal
radiation effect. He linearized the Rosseland formula for thermal
radiation by assuming small temperature differences within the
flow. In a recent article, Magyari and Pantokratoras [12] showed
that linear radiation heat transfer problem reduces to a simple re-
scaling of Prandtl number by a factor containing the radiation
parameter. Keeping this in view, Rahman and El-tayeb [13] con-
sidered the radiation effects on the flow of an electrically con-
ducting nanofluid by using the exact Rosseland formula. Pantok-
ratoras and Fang [14] investigated the Sakiadis and Blasius flow
problems considering the non-linear radiation. Recent studies
pertaining to the non-linear radiation heat transfer in the
boundary layer flows can be found in the Refs. [15–19].

The purpose of current work is to investigate the non-linear
radiative heat transfer in the three-dimensional flow of UCM fluid
bounded by a bi-directional stretching surface. Upper-convected
Maxwell (UCM) fluid is a subclass of rate type fluids which is
important in describing the influence of fluid relaxation time. It
has gained special attention of the researchers in the past due to
its simplicity. Recently, various papers involving the flow analysis
of Maxwell fluid have appeared (see for instance [20–26]). It will

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nlm

International Journal of Non-Linear Mechanics

http://dx.doi.org/10.1016/j.ijnonlinmec.2015.11.006
0020-7462/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ92 51 90855596.
E-mail addresses: ammar.mushtaq@rcms.nust.edu.pk (A. Mushtaq),

meraj_mm@hotmail.com, merajmustafa@sns.nust.edu.pk (M. Mustafa),
fmgpak@gmail.com (T. Hayat), aalsaedi@kau.edu.sa (A. Alsaedi).

International Journal of Non-Linear Mechanics 79 (2016) 83–87

www.sciencedirect.com/science/journal/00207462
www.elsevier.com/locate/nlm
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.11.006
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.11.006
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.11.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2015.11.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2015.11.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2015.11.006&domain=pdf
mailto:ammar.mushtaq@rcms.nust.edu.pk
mailto:meraj_mm@hotmail.com
mailto:merajmustafa@sns.nust.edu.pk
mailto:fmgpak@gmail.com
mailto:aalsaedi@kau.edu.sa
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.11.006


be seen later that consideration of non-linear radiative heat flux
produces a strongly non-linear but interesting energy equation for
the temperature field. Shooting method together with fifth-order
Runge–Kutta integration and Newton method is employed for the
development of numerical solution. Computational results for
both viscous and Maxwell fluids are presented in a tabular form.
Graphical results for the velocity and temperature distributions
are also presented and analyzed.

2. Basic equations

Consider three-dimensional flow of upper-convected Maxwell
(UCM) fluid induced by a stretching surface occupying the xy-plane
(see Fig. 1). The velocities of the sheet along the x- and y-directions
are assumed to be UwðxÞ ¼ ax and VwðyÞ ¼ by respectively in which
a;b40 are constants. Let Tw be the constant temperature at the
sheet whereas T1 denotes the fluid temperature outside the ther-
mal boundary layer. The equations governing the three-dimensional
flow of UCM fluid with radiative heat transfer are expressed below
(see Liu and Andersson [3] and Awais et al. [6] for details):
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where u; v and w are the velocity components along the x-, y- and
z-directions respectively, λ1 is the fluid relaxation time, ν is the
kinematic viscosity, α is thermal diffusivity of the fluid, ρ is the fluid
density, Cp is the specific heat, qr ¼ � 4σ�=3k�

� �
∂T4=∂z is the Ros-

seland radiative heat flux in which σ� is the Stefan–Boltzman con-
stant and k� is the mean absorption coefficient respectively. The
boundary conditions in the present problem are:

u¼ Uw ¼ ax; v¼ Vw ¼ by;w¼ 0; T ¼ Tw at z¼ 0;
u; v-0; T-T1 as z-1:

ð5Þ

We now introduce the following non-dimensional quantities
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In view of the above variables, the continuity Eq. (1) is auto-

matically satisfied and the Eqs. (2)–(5) become
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f ¼ g ¼ 0; df
dη¼ 1; dg

dη¼ c;θ¼ 1 at η¼ 0;
df
dη-0; dg

dη-0; θ-0 as η-1:
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In the above equations K ¼ λ1a is the Deborah number, c¼ b=a
is the stretching rates ratio, θw ¼ Tw=T1 is the temperature ratio
parameter, Pr¼ ν=α is the Prandtl number and Rd¼ 16σ�T3

1=3kk�

is the radiation parameter. Note that for c¼ 0 the above model
corresponds to the two-dimensional flow whereas axisymmetric
flow case is achieved by setting c¼ 1.

The quantity of practical interest here is the local Nusselt
number Nux defined by

Nux ¼
xqw

k Tw�T1ð Þ; ð11Þ

where qw ¼ �kð∂T=∂zÞz ¼ 0þqr is the wall heat flux. Now using
dimensionless quantities from Eq. (6) into Eq. (11) we obtain

Re�1=2
x Nux ¼ �½1þRdθ3

w�θ0ð0Þ; ð12Þ
where Rex ¼Uwx=ν is the local Reynolds number.

3. Numerical results and discussion

The solutions of Eqs. (7)–(9) with the boundary conditions (10)
are obtained numerically by employing shooting approach with
fifth-order Runge–Kutta method. The unknown initial conditions
f 00 0ð Þ; g″ 0ð Þ and θ0ð0Þ are estimated iteratively through Newton
method. All computations are successfully performed in MATLAB
with error tolerance of 10�6. Our main focus in this section is to
explore the behaviors of embedded flow parameters on the velo-
city and temperature distributions. For this purpose we plot
Figs. 2–8 and prepare Tables 1 and 2 for the computational results.

For the validity of present simulations, we compared the
numerical results of f ″ 0ð Þ; g″ 0ð Þ and θ0ð0Þ with Liu and Andersson
[3] in a limiting sense. The results appear to be almost identical in
all the cases as can be seen through Table 1. Influence of Deborah
number K on the x- and y-components of velocity is sketched in
the Fig. 2. The Deborah number is defined as the ratio of fluid
relaxation time to its characteristic time scale. Relaxation time is
the time taken by the fluid to gain equilibrium once the shear
stress is imposed. The relaxation time is expected to be larger for
the fluids having higher viscosity. Therefore an increase in K may
be regarded as an increase in the fluid viscosity which restricts the
fluid motion and hence the velocity decreases. Due to this reason
the hydrodynamic boundary layer thins when K is increased. We
also noted that change in the velocity fields f 0 and g0 is larger in the
three-dimensional flow when compared with the two-
dimensional and axisymmetric flows.

z

o

Vw by

Uw ax

Tw

x

y
Fig. 1. A schematic diagram showing the development of boundary layer.
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