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a b s t r a c t

The finite deformation response of a compressible internally balanced elastic material is studied for
deformations that involve progressive shearing. The internally balanced material theory requires that an
equation of internal balance is satisfied at each material point. This arises from the constitutive theory
which makes use of a multiplicative decomposition of the deformation gradient. Satisfaction of the
internal balance requirement then yields the most energetically favorable decomposition. Here we
consider a particular compressible internally balanced material model that is motivated by a Blatz–Ko
type energy from the conventional hyperelastic theory. The conventional hyperelastic theory occurs as a
special limiting case of the internally balanced constitutive theory. More generally, the internally
balanced material exhibits softer mechanical behavior. This gives rise to a stress-plateau in the simple
shearing response whereas such plateaus do not occur in the corresponding hyperelastic treatment. The
boundary value problem for azimuthal shearing with a possible radial stretching is then studied. The
internally balanced material response is again found to be softer than that of the hyperelastic limiting
case. This is manifest in terms of an upper bound to the applied twisting moment for the existence of
solutions to the boundary value problem. In contrast, the hyperelastic limiting case has solutions for all
values of applied moment.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In finite deformation solid mechanics the deformation gradient
F¼ ∂x=∂X is central to the kinematic description. Here x¼ χ ðXÞ is
the mapping from the reference location X to the current location
x. The theory of hyperelasticity makes use of F to develop its
constitutive theory in terms of the elastic stored energy density
W ¼WðCÞ where C¼ FTF. In the absence of internal material
constraints, the Cauchy stress T is then given by

T¼ 2
J
F
∂W
∂C

FT ð1Þ

with J ¼ det F. The stress equations of equilibrium in the absence
of body forces take the well known form

div T¼ 0 ð2Þ

where div is the divergence operator with respect to current
configuration x.

More general treatments of solid material behavior, specifically
those that seek to describe how a combination of elastic and
inelastic effects govern large deformation, often make use of a
multiplicative decomposition of F, say

F¼ F̂Fn: ð3Þ
This includes the Kröner–Lee multiplicative decomposition for the
treatment of finite deformation plasticity [1,2], as well as
descriptions of growth and remodeling in biological tissue (e.g.,
[3,4]). The standard modeling scenario when invoking (3) involves
Fn describing the inelastic part of the process after which F̂ pro-
vides some elastic accommodation. The scientific literature in this
area is now vast, and new types of physical phenomena are reg-
ularly being described using such a decomposition [5–7]. Because
elastic and inelastic effects may permeate all aspects of a complex
physical process, decomposition sequences in which elastic and
inelastic factors alternate with each other can also logically be
considered (e.g., [8]). This motivates the consideration of (3) in a
context where both F̂ and Fn are each associated with a separate
purely elastic type of effect. A theory of internally balanced elastic
materials emerges under such considerations. Because the con-
ventional theory of hyperelasticity (meaning the theory which
does not invoke (3)) provides useful simplifications under the
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constraint of material incompressibility, a theory of internally
balanced incompressible elastic solids was first presented in [9,10].
These works showed how the essential features of the decom-
position (3) are determined in an equilibrium setting by mini-
mization with respect to the decomposition (3) itself.

More recently, we have established how a theory of internally
balanced elastic materials based on (3) emerges when the solid is
subject to no material constraints whatsoever [11]. Here it is useful
to recall the situation in conventional isotropic hyperelasticity,
where the incompressible material theory is typically mathema-
tically more tractable than the compressible material theory. The
presence of the Lagrange multiplier pressure in the incompressible
material theory often allows easy mathematical eliminations that
simplify both the determination of basic force–stretch relations (in
the context of homogeneous deformations) and the getting of
simple integrable governing equations (in the context of boundary
value problems describing inhomogeneous deformation). Indeed
the incompressible theory leads to broad classes of universal
inhomogeneous deformations that satisfy (2) whereas no such
universal inhomogeneous deformations exist in the compressible
hyperelastic material theory.

In the internally balanced elastic material theory for which (3)
is an essential feature, comparing the compressible theory devel-
opment of [11] to the incompressible theory development of [9,10]
shows how the compressible theory generally requires more
involved analytical procedures because of the extra degree of
freedom associated with an unspecified volume change. Even so, it
was shown in [11] how the compressible material theory still leads
to tractable analysis of key homogeneous deformation behavior.
The work [11] also showed how the conventional hyperelastic
theory is naturally retrievable in a well defined limiting sense of
the more general internally balanced material theory. It was fur-
ther established how the internally balanced material theory
provides for an additional softening mechanism that manifests
itself for large strains.

While treating the important cases of uniaxial loading and
pure pressure loading, the development of [11] did not treat
deformations for which the principle directions change as the
deformation proceeds. This is the typical situation, for example
it occurs even in a simple shearing. Nor did [11] consider states
of inhomogeneous deformations as would naturally arise in the
consideration of boundary value problems. We address these
issues here by focusing on shearing deformations. A strong
motivation for our treatment is provided by the work of
Wineman and Waldron [12] who show, in the context of con-
ventional hyperelasticity, how a thorough knowledge of the
normal stress effects in homogeneous shearing deformations
can guide the analysis of boundary value problems in which
shearing arises due to various twisting actions that occur on
external boundaries. We find that a similar understanding can
guide the analysis for internally balanced compressible elastic
solids. Specifically, we show how the simple shearing
mechanical response (shear stress vs. amount of shear) gives a
large shear response in which the shear stress approaches an
asymptotic upper bound. The asymptotic bound is dependent
upon material parameters in the constitutive law such that
special limiting choices of the material parameters recover a
conventional hyperelastic theory in which the shear stress
increases without bound. Thus the general softening aspect for
this constitutive class of internally balanced elastic solids is
confirmed for shearing deformations. These aspects are
described in Sections 2–4.

Guided by these results a boundary value problem for the
twisting of a cylinder is then formulated so as to yield defor-
mations in which azimuthal shearing is accompanied by radial
deformation. The boundary value problem is treated and

solved by a numerical shooting algorithm in Sections 5–6. It is
found that the radial part of the deformation involves volume
decrease near the inner boundary and volume increase near
the outer boundary. Such solutions are only obtainable for a
finite range of applied twisting amount. The moment–twist
relation correlates with the simple shearing behavior in the
sense that materials with larger shear stress asymptotes in
simple shear are found to generate a larger range of twisting
moments with equilibrium solutions. Broader connections are
described in the concluding Section 7.

2. Background

The elastic stored energy density W for an internally balanced
material depends upon both F̂ and Fn from (3). This is equivalent
to a dependence upon F and Fn. As discussed in [9] the require-
ment of material frame indifference then gives that W ¼WðC;CnÞ
where Cn ¼ FnTFn. It is also useful to point out that a dependence

on C and Cn is not equivalent to a dependence on C and Ĉ ¼ F̂
T
F̂.

Integrating W over the whole body gives the overall energy in the
system. Equilibrium configurations minimize this energy with
respect to both x and Cn.

Eqs. (1) and (2) continue to hold in the equilibrium theory of
internally balanced elastic materials because they follow from the
minimization with respect to x. Energy minimization with respect
to Cn generates the internal balance relation

∂W
∂Cn

¼ 0; ð4Þ

which is the feature that distinguishes the internally balanced
material theory from conventional hyperelasticity.

Recall also that if a hyperelastic material is isotropic then the
dependence of W on C is only through the principal scalar invar-
iants I1; I2 and I3 ¼ J2 where

I1 ¼ trðCÞ; I2 ¼ 1
2 ðtrðCÞÞ2�trðC2Þ
h i

; I3 ¼ det C; ð5Þ

so that W ¼WðI1; I2; I3Þ. In this case (1) gives

T¼ 2
J
∂W
∂I1

Bþ∂W
∂I2

I1 B�B2
� �

þ I3
∂W
∂I3

I
� �

ð6Þ

where B¼ FFT and I is the identity tensor.
As discussed in [11], a sufficient condition for an internally

balanced elastic material to be isotropic is that the dependence of
W on C and Cn is only through In1; I

n

2; I
n

3, which are the principal
scalar invariants of Cn, and Î1; Î2; Î3, which are the principal scalar
invariants of Ĉ. With respect to the latter it is important to note
that Î1; Î2 and Î3 can each be determined directly from C and Cn

even though Ĉ itself cannot. For example

Î1 ¼ tr Ĉ ¼ F̂ : F̂ ¼ ðFFn�1Þ : ðFFn�1Þ ¼ Fn�1Fn�T : FTF¼ Cn�1 : C: ð7Þ
Taking W ¼WðÎ1; Î2; Î3; In1; In2; In3Þ the derivatives in (1) and (4) are
then calculated from the chain rule

∂W
∂C

¼
X3
i ¼ 1

∂W
∂Î i

∂Î i
∂C

and
∂W
∂Cn

¼
X3
i ¼ 1

∂W
∂Î i

∂Î i
∂Cn

þ
X3
i ¼ 1

∂W
∂Ini

∂Ini
∂Cn

: ð8Þ

On this basis it is found [11] that (1) gives

T¼ 2
J

∂W
∂Î1

B̂þ∂W
∂Î2

Î1B̂� B̂
2� �

þ Î3
∂W
∂Î3

I

" #
ð9Þ

with B̂ ¼ F̂F̂
T
. The internal balance equation (4) then takes the

form

Ξ¼ 0; ð10Þ
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