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a b s t r a c t

In this paper, the nonlinear vibration of a single-walled carbon nanotube conveying fluid is investigated
utilizing a multidimensional Lindstedt–Poincaré method. Considering the geometric large deformation of the
single-walled carbon nanotube and external harmonic excitation force, based on nonlocal elastic theory and
Euler–Bernoulli beam theory, the nonlinear vibration equation of a fluid-conveying single-walled carbon
nanotube is established. Analyzing the equation through the multidimensional Lindstedt–Poincaré method,
and from the solvability condition of the nonlinear vibration equation, the cubic algebraic equation which
indicates the amplitude–frequency relation is obtained. Based on the root discriminant of the cubic equation,
the first order primary response of the pinned–pinned carbon nanotube is discussed. The relations among
internal resonance, the amplitude and frequency of the external excitation force are analyzed in detail. When
the external excite force frequency is around the first mode natural frequency, the first mode primary
resonance occurs. If simultaneously the first two modes natural frequency ratio is around 3, internal
resonance occurs and the internal resonance region depends on the amplitude of external excitation force.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon nanotubes (CNTs) have attracted considerable attention
after their discovery [1]. Because of their unique hollow cylindrical
geometry structure and remarkable mechanical and electrical prop-
erties [2], CNTs have substantial applications in gas storage [3], fluid
storage, fluid transport [4], and drug delivery system [5–7].

As a small scale fluid–structure interaction system, the fluid-
conveying CNTs show higher sensitivity to the vibration character-
istics, and the research of flow-induced vibration and instability is of
fundamental significance. Up till now, there are mainly three cate-
gories for investigating the mechanical characteristics of CNTs:
experiment research, molecular dynamics simulations (MDS), and
analysis based on continuum mechanics. As the radii of CNTs are
generally vary from point several to tens of nanometers, the lengths
are mostly in dozens of nanometers to microns, a controlled experi-
ment to study mechanical properties of CNTs is very difficult. An MDS
method requires an enormous amount of computational effort
especially for large sized atomic systems. Thus this method can be
applied only to study small sized systems. Elastic beam and shell

models are the major continuummechanic theories used in analyzing
mechanical and vibration characteristics of CNTs. When the aspect
ratio of CNTs is much larger than 10, the shear deformation and rotary
inertia of the beam can be neglected and Euler–Bernoulli beam
theory can be utilized [8,9]. For short CNTs or higher mode analysis,
shear deformation and rotary inertia are important for the vibration
of CNTs, and thus Timoshenko beam theory is needed [10–12]. Yoon
et al. [8,9] researched the influence of internal moving fluid on free
vibration and stability of CNTs using the classical Euler–Bernoulli
model for both the supported and cantilevered systems. They found
that the internal moving fluid could substantially affect resonant
frequencies especially for longer CNTs of larger radius at higher flow
velocity, and the critical flow velocity for structural instability or
flutter could fall within the range of practical significance. The
surrounding elastic medium can significantly reduce the effect of
internal moving fluid on resonant frequencies. Khosravian and Rafii-
Tabar [10] investigated the effect of non-viscous fluid flow on the
vibration of multi-walled carbon nanotubes (MWCNTs) using both
Timoshenko beam model and Euler beam model. The main conclu-
sion has been that, compared to Euler classical beam model, the
Timoshenko beam model predicts the loss of stability at lower fluid
flow velocities. Based on Timoshenko beam theory, Hsu et al. [11]
investigated the resonance frequency of chiral SWCNTs and found
that the effect of shear deformation and rotary inertia is significant as
the aspect ratio is low. Lee and Chang [12] researched the flexural
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vibration of the fluid-conveying SWCNT by the Timoshenko beam
model and found that the influence of shear deformation and rotary
inertia can be neglected when the aspect ratio is 60. Based on an
elastic shell model, Yan et al. [13] studied the flow-induced instability
of double-walled carbon nanotubes (DWCNTs). They pointed out
that the critical flow velocity and loss of instability are significantly
related to the van der Walls (vdW) interaction and the aspect ratio of
DWCNTs.

As the size of CNTs is sufficiently small, the material's micro-
structure becomes more important and cannot be ignored any-
more. Classical continuum elasticity, which is a scale independent
theory, cannot predict the size effect and maybe no longer
accurate enough for simplification of vibration characteristics of
CNTs. The nonlocal continuum mechanics regard that the stress
state at a given point is a function of the strain states of all points
in the body which clarifies the scale effect in elasticity. The
nonlocal continuum mechanics contains the information of the
long-range forces between atoms, and the internal length scale is
introduced into the constitutive equations simply as a material
parameter [14]. Application of nonlocal continuum theory to
nanotechnology was initially addressed by Peddieson et al. [15]
to analyze the static deformations of beam structures based on a
simplified nonlocal model [16]. Lee and Chang [17] studied the free
transverse vibration of the fluid-conveying single-walled carbon
nanotubes (SWCNTs) using nonlocal elastic theory. They found
that the frequency and mode shape are influenced by the small
length scale and the effect was more obvious as the flow velocity
decreased, especially for the higher-order modes. Tounsi et al. [18]
developed a more accurate equation of the vibration of SWCNTs
conveying fluid. Wang [19] studied the dynamical behavior of
DWCNTs conveying fluid accounting for the role of small length
scale. It was demonstrated that the effect of small length scale on
the critical flow velocities can be neglected. Zhen and Fang [20]
found that the nonlocal effect is more obvious as the fluid velocity
increase which is different from the above results, and interpreted
the reason for the difference. Ghavanloo et al. [21] found that
curved CNTs embedded in vicso-elastic medium are uncondition-
ally stable even for a system with sufficiently high flow velocity.
Moreover, some investigation on wave propagation, buckling and
vibration of CNTs have been done based on nonlocal Timoshenko
and higher order beam theories [22–27]. In the past decades,
several other theories (e.g., gradient elasticity theory and modified
couple stress theory) have been used to study the dynamical
behaviors of fluid-conveying micro- and nanotubes. Wang [28]
studied the reliability of various theoretical beam models via
gradient elasticity theories for wave propagation analysis of
fluid-conveying SWCNTs with either Euler–Bernoulli beam theory
or Timoshenko beam theory and either stress or strain gradients. It
is found that the combined strain/inertia gradient Timoshenko
beam theory is more suitable for analyzing the dynamical beha-
viors of fluid-conveying nanotubes. Ke and Wang [29] investigated
the vibration and instability of fluid-conveying DWCNTs based on
the modified couple stress theory and Timoshenko beam theory.

In recent years, some investigations have been done on the
nonlinear problems of CNTs [30–35]. Nonlinear vibrations of
nanotubes have been studied in the case of a SWCNT [36] and in
the case of DWCNTs [37] where geometric nonlinearity and simply
supported boundary conditions are considered. The effect of the
geometric nonlinearity and the nonlinearity of vdW forces on the
transverse vibration of the DWCNTs conveying fluid and the
interaction between two types of nonlinearities are investigated
by Kuang et al. [38]. Ke et al. [39] studied the nonlinear free
vibration of embedded DWCNTs based on Eringen's nonlocal
elasticity theory and von Kármán geometric nonlinearity using
the Timoshenko beam model. Rasekh et al. [40] investigated the
influence of internal moving fluid and compressive axial load on the

nonlinear vibration and stability of embedded CNTs. Considering
geometric nonlinearity and nonlinear vdW force, Fang et al. [41]
analyzed nonlinear vibration of DWCNTs. Adali [42] provided a
variational formulation for MWCNTs and derived the natural
boundary conditions at a free end using a nonlinear continuum
model. Wang and Li [43] studied the nonlinear free vibration of
nanotube with small scale effects embedded in viscous matrix.

Furthermore, due to large elastic deformation, nonlinear vibration
of microelectromechanical systems (MEMS) and nanoelectromecha-
nical systems (NEMS) appear in the practical engineering and play an
important role in the design and analysis of MEMS/NEMS. Nayfeh
and Balachandran have done much work on the nonlinear forced
vibration and internal resonance of macro-systems [44–46]. But as to
our knowledge, there are few investigations on the nonlinear
vibration of fluid-conveying SWCNTs with external harmonic excita-
tion, especially for the resonant characteristics with small scale
effects. Considering these factors, investigation on nonlinear vibra-
tion properties of nanotube can provide a useful help for the design
and analysis of MEMS/NEMS devices working at large amplitudes.

In this article, based on nonlocal elasticity theory and Euler–
Bernoulli beam theory, the forced vibration and internal resonance of
a SWCNT conveying fluid under harmonic excitation is researched
utilizing the multidimensional Lindstedt–Poincaré (MDLP) method.

2. Equations

A schematic diagram of a fluid-conveying SWCNT embedded in
elastic mediumwith two ends simply supported is shown in Fig. 1.
In the analytical model, we suppose the internal fluid is an
incompressible steady flow and the gravity effect is neglected. It
is assumed that there is no tangential external loading along the
axial and the circumferential directions of the SWCNT. In this case,
the axial displacement of the SWCNT is negligible. From Ref. [20]
we get the vibration equation of fluid-conveying SWCNT
embedded in elastic medium based on nonlocal Euler–Bernoulli
beam theory as follow:
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where wðx; tÞ is the transverse displacements of the SWCNT along
the x-axis at time t, E is the Young's modulus of the SWCNT, I is the
moment of inertia, m and mf are the mass of SWCNT and the mass
of the fluid per unit length respectively, u is the flow velocity of
the internal fluid. e0a represents the effect of nonlocal elasticity
and k is the Winkler constant of the surrounding elastic medium,
Nx is the axial pressure.

Fig. 1. A schematic diagram of a fluid-conveying SWCNT embedded in elastic
medium.
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