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a b s t r a c t

A constrained elastica under edge thrust may have multiple static equilibrium positions. It is in general
difficult to determine the stability of these equilibrium positions due to the presence of unilateral
constraints. In this paper we propose an energy method for this purpose. The beam is decretized into a
series of rigid links connected at the joints by torsional springs. To deal with the unilateral constraints in
question, we allow the contact point on the elastica to be slightly different before and after superposing
virtual displacements. In order to accommodate this change of contact point we split the link near the
boundary point of the contact region into two sub-links. It is noted that certain restrictions must be
imposed on the contact point change in order for the total potential to be stationary if the equilibrium
position is symmetric. After linearizing the constraint equations, the matrix associated with the second
variation of the total potential before and after superposing virtual displacement can be established.
From the eigenvalues of this matrix, the stability of the constrained elastica can be determined. One-
point-contact and one-line-contact deformations are discussed in detail. Other deformation patterns can
be analyzed in a similar manner. This energy method supplements the vibration method proposed
earlier by the first author, in which the contact point is allowed to change during vibration.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The primary goal of the research in constrained elastica is to
understand the behavior of a thin elastic strip under edge thrust
when it is subject to lateral surface constraints. This is a highly
non-linear mechanics problem which very often admits multiple
equilibrium configurations for a specified loading condition
[1–10]. In order to determine whether a calculated deformation
exists in reality, a stability analysis is needed. However, very few
methods are available for the stability analysis of constrained
elastica. Recently, Chen and his colleagues [11,12] developed a
vibration method which takes into account the change of contact
points between the elastica and the external constraint during
vibration. From the calculated natural frequencies, the stability of
the equilibrium positions can be determined.

Constrained elastica without friction is a conservative elastic
system. Intuitively, one should be able to use energy method to
determine its stability. Conventional energy method states that if
the total potential of a conservative mechanical system has a local
minimum at a static equilibrium position, then the equilibrium

configuration is stable [13,14]. Domokos et al. [4] tried to apply
this concept in constrained elastica, but concluded that the
conventional energy method is difficult to implement. One of
the difficulties of the stability analysis arises from the fact that
while the problem is continuous, the relevant functions are non-
smooth due to the contact forces. Doraiswamy et al. [15] used a
direct search method to find the equilibrium configuration with
the global minimum total potential. Although they can find the
equilibrium position with the global minimum total potential,
there is no way to tell whether the other equilibrium positions
have local minimum or not. The above attempts in using energy
method to determine the stability of a constrained elastica
encountered the same problem; i.e., it is difficult to write the
matrix associated with the second variation of the total potential
due to the presence of unilateral constraints.

Some researchers tried to extend the conventional variational
principle without unilateral constraints to the one with unilateral
constraints [16,17]. One of the main issues here is how to define
kinematically admissible virtual displacements. In these works,
the authors proposed a contact condition saying that the contact
area (in equilibrium) cannot penetrate the rigid boundary after
virtual displacement (see Eq. (29) of [17]). They did not consider
the situation that after superposing a virtual displacement field
onto the equilibrium configuration, the elastic structure may
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contact the constraining wall in a slightly different area. In other
words, the domain of contact may be different before and after
superposing virtual displacement.

In this paper we propose an energy method, which takes into
account the change of contact point before and after superposing
virtual displacement, to determine the stability property of a
constrained elastica. In Section 2 the elastica is discretized by
using a series of rigid links connected by torsional springs. In this
way the continuous beam is discretized into a finite degree-of-
freedom system. The total potential of the loaded elastica can be
written in terms of these degrees of freedom. In Section 3 the one-
point-contact deformation of a clamped–clamped elastica is
studied in detail. After linearizing the constraint equations prop-
erly the matrix associated with the second variation of the total
potential is established. Symmetric and asymmetric deformations
are investigated separately. In Section 4 we extend the analysis to
one-line-contact deformation. In Section 5 other deformation
patterns which are variations and extensions of the one-point
and one-line-contact deformations are discussed briefly. The
results are compared with those predicted via vibration method.
In Section 6 several conclusions are summarized.

2. Link-spring model

We consider an inextensible beam of length L under edge
load and constrained between a pair of parallel walls. The two
ends of the beam can be either clamped or pinned. We consider
the case when one end A is fixed in space, and the other end B is
clamped and allowed to slide without friction along line AB. An
xy-coordinate system is fixed at point A. When the edge thrust
Pn at end B is beyond the Euler’s critical load, the beam will
buckle into a curved shape. As a result, the end B moves to the
left a distance ΔLn. A set of parallel plane walls at y¼ 7Hn

prevents the elastica from deforming freely. Fig. 1(a) shows the
case when the buckled beam touches the upper wall at one
point. The contact point is not necessarily in the middle. All
contacts are assumed to be frictionless.

The continuous beam described above is modeled as a chain of
N�1 rigid links of length hi

n (i¼1,…, N�1) connected by torsional
springs ki

n. Link hi
n is between ki

n and kiþ1
n. The shape of the

buckled beam is described by the angles θi of the rigid links
measured counterclockwise from x-axis. The torsional springs are
used to represent the bending resistance of the beam. After
replacing the curvature dθ=ds by a backward finite difference,

the bending strain energy of a differential bam element
EI=2
� �

dθ=ds
� �2 can be discretized into kni =2

� �
θi�θi�1ð Þ2, where

the equivalent spring constant is [18,19]

ki
n ¼ ðEIÞi

hi
n

ð1Þ

ðEIÞi is the bending stiffness of the beam element i. In the following
we consider the special case when the beam is uniform along the
length. Therefore, ki

n may be represented by a constant kn. We also
assume that the lengths of the rigid links are equal, so that hi

n is a
constant hn. The total length L¼ ðN�1Þhn. We assume that the
discretized beam is supported by spiral springs kL

n and kR
n at the

ends. In the case of pinned–pinned boundary conditions, both kL
n

and kR
n are zero. In the case of clamped–clamped boundary

conditions, kL
n and kR

n are infinity. In practical numerical simula-
tion they are assigned a very large value instead. In this way the
continuous beam is discretized into an (N�1)-degree-of-freedom
system.

The strain energy of the link-spring chain can be written as

Un

S ¼
knL
2
θ21þ

knR
2
θ2N�1þ

kn

2

XN�1

i ¼ 2

θi�θi�1ð Þ2 ð2Þ

We assume that the edge thrust is prescribed and increased quasi-
statically. This procedure is called load control. The potential
corresponding to the external edge load Pn is

Un

P ¼ �Pnhn N�1�
XN�1

i ¼ 1

cos θi

 !
ð3Þ

After introducing the following dimensionless variables (without
asterisks),

US;UP ; k; kL; kRð Þ ¼ L
4π2EI

Un

S ;U
n

P ; k
n; knL ; k

n

R

� �
; P ¼ L2

4π2EI
Pn;

ðH;h;ΔLÞ ¼ 1
L
ðHn;hn;ΔLnÞ

Eqs. (2) and (3) can written in dimensionless forms

US ¼
1
2
kLθ21þ

1
2
kRθ2N�1þ

1
2
k
XN�1

i ¼ 2

θi�θi�1ð Þ2 ð4Þ

UP ¼ �Ph N�1�
XN�1

i ¼ 1

cos θi

 !
ð5Þ

where k¼ N�1ð Þ=4π2 and h¼ 1= N�1ð Þ. The total potential of the
loaded elastica can be written as

UT ¼ USþUP ð6Þ

3. One-point-contact deformation

In the following we take a one-point-contact deformation as
an example. Fig. 1(b) shows the discretized model of the
buckled beam touching the top wall at point Nc1. In modeling
point contact at Nc1, we assume that the whole link between
nodes Nc1 and Nc1þ1 is on the wall. It is believed that when the
number N is large enough, this is a reasonable model for point
contact.

First of all, the y coordinate of the right end is zero. Therefore,

XN�1

i ¼ 1

sin θi ¼ 0 ð7ÞFig. 1. (a) A clamped buckled beam contacts the upper wall at one point. (b) Link-
spring model of a buckled beam in (a).
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