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a b s t r a c t

In this paper, we present a non-local non-linear finite element formulation for the Timoshenko beam
theory. The proposed formulation also takes into consideration the surface stress effects. Eringen's non-
local differential model has been used to rewrite the non-local stress resultants in terms of non-local
displacements. Geometric non-linearities are taken into account by using the Green–Lagrange strain
tensor. A C0 beam element with three degrees of freedom has been developed. Numerical solutions are
obtained by performing a non-linear analysis for bending and free vibration cases. Simply supported and
clamped boundary conditions have been considered in the numerical examples. A parametric study has
been performed to understand the effect of non-local parameter and surface stresses on deflection and
vibration characteristics of the beam. The solutions are compared with the analytical solutions available
in the literature. It has been shown that non-local effect does not exist in the nano-cantilever beam
(Euler–Bernoulli beam) subjected to concentrated load at the end. However, there is a significant effect
of non-local parameter on deflections for other load cases such as uniformly distributed load and
sinusoidally distributed load (Cheng et al. (2015) [10]). In this work it has been shown that for a
cantilever beam with concentrated load at free end, there is definitely a dependency on non-local
parameter when Timoshenko beam theory is used. Also the effect of local and non-local boundary
conditions has been demonstrated in this example. The example has also been worked out for other
loading cases such as uniformly distributed force and sinusoidally varying force. The effect of the local or
non-local boundary conditions on the end deflection in all these cases has also been brought out.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The classical theory of hyperelasticity is used to solve a large
number of problems in engineering, wherein the stress at a given
point uniquely depends on the current values and possibly also the
previous history of deformation and temperature at that point
only. Deformation in this case is characterized by the deformation
gradient or by an appropriate strain tensor, that is, it is fully
determined by the first gradient of the displacement field. In
modeling micro/nano structures where the size effect becomes
prominent, for example, study of elastic waves when dispersion
effect is taken to account and the determination of stress at the
crack tip when the singularity of the solution is of concern, the
classical theory cannot model the material behavior accurately.

The inhomogeneities present in any material at the microscopic
scale influence its properties at the macroscopic scale: materials such
as suspensions, blood flows, liquid crystals, porous media, polymeric

substances, solids with microcracks, dislocations, turbulent fluids with
vortices, and composites point to the need for incorporating micro-
motions in continuum mechanical formulations [13]. There has been
considerable focus towards the development of generalized continuum
theories [19] that account for the inherent microstructure in such
natural and engineering materials (see [36,15]). The notion of general-
ized continua unifies several extended continuum theories that
account for such a size dependence due to the underlying micro-
structure of the material. A systematic overview and detailed discus-
sion of generalized continuum theories has been given by Bazant and
Jirasek [8]. These theories can be categorized as gradient continuum
theories (see works by Mindilin et al. [45–47], Toupin [68], Steinmann
et al. [13,34,66,37], and Casterzene et al. [52], Fleck et al. [20,63], Askes
et al. [3–5]), microcontinuum theories (see works by Eringen
[18,16,19]), Steinmann et al. [35,28], and non-local continuum theories
(see works by Eringen [17], Jirasek [33], Reddy [54], and others
[7,12,51,10]). Recently, the higher order gradient theory for finite
deformation has been elaborated (for instance see [21,38,39,52]),
within classical continuum mechanics in the context of homogeniza-
tion approaches. A comparison of various higher order gradient
theories can be found in [20]. A more detailed formulation of
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gradient approach in spatial and material setting has been presented
in [35].

Classical continuum mechanics takes exclusively the bulk into
account, nevertheless, neglecting possible contributions from the
surface of the deformable body. However, surface effects play a crucial
role in the material behavior, the most prominent example being
surface tension. A mathematical framework was first developed by
Gurtin [23] to study the mechanical behavior of material surfaces. The
effect of surface stress on wave propagation in solids has also been
studied by Gurtin [24]. The tensorial nature of surface stress was
established using the force and moment balance laws. Bodies whose
boundaries are material surfaces are discussed and the relation
between surface and body stress examined in a recent work by
Steinmann [64] and by Hamilton [25]. The surface effects have been
applied to modeling two [31] and three-dimensional continua in the
frame work of finite element method (see [32,14]). Similar studies on
static analysis of nanobeams using non-local finite element models
have been done by Mahmoud [43].

The focus of this work is on non-local non-linear formulation
together with surface effects for static and free vibration analysis of
Timoshenko beams. The non-local formulations can be of integral-
type formulations with weighted spatial averaging or by implicit
gradient models which are categorized as strongly non-local, while
weakly non-local theories include for instance explicit gradient
models [8]. Herein we consider a strongly non-local problem. The
Timoshenko beam can be considered as a specific onedimensional
version of a Cosserat continuum. Recently various beam theories
such as Euler–Bernoulli, Timoshenko, Reddy, and Levinson beam
theories were reformulated using Eringen's non-local differential
constitutive model by Reddy [54]. The analytical solutions for
bending, buckling and free vibrations were also presented in [54].
Various shear deformation beam theories were also reformulated in
recent works by Reddy [55] using non-local differential constitutive
relations. Similar works have been done to study bending, buckling
and free vibration of nanobeams by Aydogdu [7], Civalek [12].

Eringen's non-local elasticity theory has also been applied to
study bending, buckling and vibration of nanobeams using
Timoshenko beam theory (see [40,60,72,48]). Numerical solutions
were obtained by a meshless method. Two different collocation
techniques, global (RDF) and local (RDF-FD), were used with multi-
quadrics radial basis functions by Roque et al. [58]. Static deforma-
tion of micro- and nano-structures was studied using non-local
Euler–Bernoulli and Timoshenko beam theory and explicit solutions
have been derived for deformations for standard boundary condi-
tions by Wang et al. (see [71,70]). Analytical solutions for beam
bending problems for different boundary conditions were derived
using non-local elasticity theory and Timoshenko beam theory by
Wang et al. [69]. Iterative non-local elasticity for Kirchhoff plates has
been presented in [62]. Thai et al. [67] developed a non-local shear
deformation beam theory with a higher order displacement field
that does not require shear correction factors. Some explicit solu-
tions involving trigonometric expansions are also presented recently
for non-local analysis of beams [74]. A finite element framework for
non-local analysis of beams has also been made in a recent work by
Sciarra et al. [61]. Size effects on elastic moduli of plate like
nanomaterials have been studied in [65].

Non-local elastic rodmodels have been developed to investigate the
small-scale effect on axial vibrations of the nanorods by Aydogdu [6]
and Adhikari et al. [1]. Free vibration analysis of microtubules based on
non-local theory and Euler–Bernoulli beam theory was done by Civalek
et al. [12]. Free vibration analysis of functionally graded carbon
nanotube with various thickness based on Timoshenko beam theory
has been investigated to obtain numerical solutions using the Differ-
ential Quadrature Method (DQM) by Janghorban et al. [30] and others
(see [11,27,2]). Studies to understand thermal vibration of single wall
carbon nanotube embedded in an elastic medium using DQMhave also

been reported in [49]. The recent studies have been towards the
application of non-local non-linear formulations for the vibration
analysis of functionally graded beams [53]. Analytical study on the
non-linear free vibration of functionally graded nanobeams incorp-
orating surface effects has been presented in [26,59,42]. The effect of
non-local parameter, surface elasticity modulus and residual surface
stress on the vibrational frequencies of Timoshenko beam has been
studied in [73,41]. The coupling between non-local effect and surface
stress effect for the non-linear free vibration case of nanobeams has
been studied in [29]. The effect of surface stresses on bending proper-
ties of metal nanowires is presented in [75]. There has been some
works on transforming non-local approaches to gradient type formula-
tions [9]. Semi-analytical approach for large amplitude free vibration
and buckling of non-local functionally graded beams has been reported
in [50].

In this paper, we present a non-local non-linear finite element
formulation for the Timoshenko beam theory. The proposed
formulation takes into consideration the surface stress effects.
Eringen's non-local differential model has been used to write the
non-local stress resultants. Geometric non-linearities are taken
into account by using Green–Lagrange strain tensor. Numerical
solutions are obtained by performing a non-linear analysis for
bending and free vibration cases. Simply supported and clamped
boundary conditions have been considered in the numerical
examples. A parametric study has been performed to understand
the effect of non-locality and surface stresses on deflection and
vibration characteristics of the beam. The solutions are compared
with the analytical solutions available in the literature. The
following Section 2 gives a background on Eringen's non-local
theory. Section 3 gives the mathematical formulation for the non-
local Timoshenko beam theory. The finite element formulation
for the Timoshenko beam theory is explained in Section 4. In
Section 5 numerical examples are presented together with para-
metric studies to demonstrate the effect of non-local and surface
stresses on the bending and vibration characteristics of the beam.

2. Non-local theories

In classical elasticity, stress at a point is a function of strain at that
point. Whereas in non-local elasticity, stress at a point is a function
of strains at all points in the continuum. In non-local theories, forces
between the atoms and internal length scale are considered in the
constitutive equation. Non-local theory was first introduced by
Eringen [19]. According to Eringen, the stress field at a point x in
an elastic continuum not only depends on the strain field at that
point but also on the strains at all other points of the body. Eringen
attributed this fact to the atomic theory of lattice dynamics and
experimental observation on phonon dispersion. The non-local
stress tensor σ at a point x in the continuum is expressed as

σ ¼
Z

Kðjx0 �xj ; τÞtðx0Þ dx0 ð1Þ

where tðxÞ is the classical macroscopic stress tensor at point x and
the kernel function Kðjx0 �xj ; τÞ represents the non-local modulus,
jx0 �xj is the distance and τ is the material constant that depends
on internal and external characteristic lengths.

Stress and strain at a point are related to each other by Hooke's
law as

tðxÞ ¼ CðxÞ : εðxÞ ð2Þ

where t is the macroscopic stress tensor, ε is the strain tensor, C is
the fourth-order elasticity tensor and ‘:’ denotes double dot
product. Eqs. (1) and (2) together form the non-local constitutive
equations of Hookean solid. Constitutive equations can also be

P. Kasirajan et al. / International Journal of Non-Linear Mechanics 76 (2015) 100–111 101



Download English Version:

https://daneshyari.com/en/article/784838

Download Persian Version:

https://daneshyari.com/article/784838

Daneshyari.com

https://daneshyari.com/en/article/784838
https://daneshyari.com/article/784838
https://daneshyari.com

