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a b s t r a c t

Lipid bilayers are the fundamental constituents of the walls of most living cells and lipid vesicles, giving
them shape and compartment. The formation and growing of pores in a lipid bilayer have attracted
considerable attention from an energetic point of view in recent years. Such pores permit targeted
delivery of drugs and genes to the cell, and regulate the concentration of various molecules within the
cell. The formation of such pores is caused by various reasons such as changes in cell environment,
mechanical stress or thermal fluctuations. Understanding the energy and elastic behaviour of a lipid-
bilayer edge is crucial for controlling the formation and growth of such pores. In the present work, the
interactions in the molecular level are used to obtain the free energy of the edge of an open lipid bilayer.
The resulted free-energy density includes terms associated with flexural and torsional energies of the
edge, in addition to a line-tension contribution. The line tension, elastic moduli, and spontaneous normal
and geodesic curvatures of the edge are obtained as functions of molecular distribution, molecular
dimensions, cutoff distance, and the interaction strength. These parameters are further analyzed by
implementing a soft-core interaction potential in the microphysical model. The dependence of the
elastic free-energy of the edge to the size of the pore is reinvestigated through an illustrative example,
and the results are found to be in agreement with the previous observations.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A phospholipid molecule consists of a hydrophilic head and two
hydrophobic fatty-acid tails [1]. When suspended in an aqueous
solution at sufficient concentrations, phospholipid molecules self-
assemble into structures such as lipid bilayers, in order to shield the
tail groups from the solvent [2,3]. Lipid bilayers are the main
constituents of cell membrane in most living organisms, as well as
model membranes such as liposomes [4]. They provide the cell and its
substructures with compartment and shape, and further, function as
barriers for water-soluble molecules such as water, ions, and proteins
[5,6]. Lipid bilayers are composed of two adjacent leaflets of phos-
pholipid molecules oriented transversely and set tail-to-tail.

Forming of open edges in lipid membranes results in the
exposure of the tail groups at the edge to water [4], which is
energetically unfavourable. As a result, phospholipid molecules
rapidly rearrange around the exposed edge, forming a semicylind-
rical rim along it. This rearrangement is the source of a line energy
at the edge. In order to eliminate this edge energy, lipid bilayers
commonly tend to form closed structures such as spheroids [7].
Nevertheless, they can transiently open due to various stimuli such

as mechanical stresses and thermal instabilities. The formation of
these transient pores is essential for regulation of PH, transmem-
brane electrochemical potential, and concentrations of different
molecules in the cell [5]. Additionally, transient open membranes
are formed during electro-formation [8]. More recently, stabilizing
pores and control over their size have been pursued by means of
electric fields [9], sonication [10], and use of edge-active chemical
agents [11]. The rapid progress in these techniques has attracted
increasing attention to the study of the open lipid bilayers,
including molecular dynamic simulations, as well as continuum
mechanical treatment and numerical investigations of the equili-
brium configurations [12,13].

Theoretical studies of the equilibrium and stability of pored
membranes have mainly relied on constitutive assumptions for
the edge, which neglect its flexural and torsional elasticity. For
instance, Boal and Rao [14], Capovilla et al. [15], and Tu and Ou-
Yang [16,17] considered the edge energy of an open lipid bilayer as
a given constant. Tu and Ou-Yang [18] considered dependence of
the edge energy on its geometry, namely geodesic and normal
curvatures. Nevertheless, their assumptions on the form of the line
energy have not been precisely justified.

May [19] obtained the line energy of a lipid bilayer edge
through optimization of the lipid packing at the vicinity of the
edge. He modeled the edge as a semicylindrical micelle, and took
the free energy per molecule to depend upon the chain length of
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the molecules, their cross-sectional area, and the strength of the
interactions of the molecules with each other and with the
surrounding solution. Although successful in obtaining the line
tension that framework did not capture the bending and torsional
energetics of the edge. The gap in the literature to successfully
relate the macro-scale edge energy to its microstructure has
motivated the current study.

The interactions between the constituent molecules of a material
may be used to obtain the free-energy density function of that
material. For instance, Keller and Merchant [20] have employed such
a microphysical approach to extract the internal energy, surface
tension, and bending energy of a liquid surface and to relate its
bending rigidity to the molecular density and interaction potential. In
a recent application of the work of Keller and Merchant [20], the
Canham–Helfrich free-energy density for a lipid vesicle was derived
based on microphysical considerations [21]. Using the same approach,
a model for the elastic free-energy of wormlike micelles was derived
[22]. In doing so, the surfactant molecules comprising the wormlike
micelle were assumed to have constant length, and thus, were
modeled by one-dimensional rigid rods. The resulted expression for
the free energy was found to be quadratic in the curvature and torsion
of the centerline of the micelle [22].

The current study adopts the microphysical approach of Keller and
Merchant [20] to investigate the elastic behaviour of the edge of a lipid
bilayer. Following May [19] and motivated by previous studies [23–
26], the edge is modeled as a semicylindrical surface. In addition, the
phospholipid molecules comprising the edge are modeled as one-
dimensional rigid rods of constant length, oriented perpendicular to
the centerline of the edge. The applied framework enables us to
extract the form of the free energy and the flexural and torsional
moduli of the edge, based on the intermolecular energetic interaction
between phospholipid molecules.

To find the free-energy density of the edge at a position x, we
account for the interactions between all phospholipid molecules on
the edge within a cutoff distance δ from the molecules at x. We
assume that the phospholipid molecules are perpendicular to the
centerline of the edge. Our derivation relies on Taylor series expansions
with respect to a dimensionless parameter ϱ≔δ=ℓ⪡1, where ℓ is a
characteristic size parameter of the edge, such as its length. For ℓ taken
as the length of the edge (or equivalently, the perimeter of a pore), it
can be related to the thickness or the length of the constituent
molecules, if the density of the molecules along the edge and their
aspect ratios are provided. The net free-energy of the edge results from
integrating the free-energy density ϕ over the centerline of the edge.

The paper is structured as follows. In Section 2, required
mathematical definitions are presented. Modeling assumptions
for the edge of an open lipid bilayer are synopsized in Section 3.
Section 4 is concerned with the derivation of the free-energy
density of such an edge. In Section 5, the consequences of choosing
a spheroidal-particle potential (Berne and Pechukas [27] and Gay
and Berne [28]) are considered to obtain the material parameters
present in the derived model. As an illustrative example, a
simplified model for a pore on a lipid bilayer is given in Section
6, and the parameters obtained in Section 5 are used to find the
free-energy of the pore as a function of its size. Finally, the key
findings of the study are summarized and discussed in Section 7.
Details of the various derivations are provided in the Appendix.

2. Differential geometry of the bounding curve of a surface

Consider a smooth, orientable, open surface S representing the
open lipid bilayer, with boundary C¼ ∂S, as depicted schematically
in Fig. 1. Let

C¼ fx : x¼ xðsÞ;0rsrLg; ð1Þ

denote the arclength parametrization of the closed boundary
curve C. On denoting the differentiation with respect to the
arclength s by a superposed dot, it follows that j _x j ¼ 1, and thus,

_x � €x ¼ 0 and j _x � €x j ¼ j €x j : ð2Þ
The unit tangent of C is introduced, in terms of the arclength
parametrization x, by

t≔ _x: ð3Þ
Since the unit tangent t has a constant length, its arclength
derivative _t ¼ dt=ds is perpendicular to it, and thus, perpendicular
to the curve C. The orientation of _t is called the unit normal of C,
and is denoted by N. The curvature vector κ at any point of C is
then defined by the arclength derivative of the unit tangent t as

κ≔_t ¼ κN; ð4Þ
where κ denotes the magnitude of the curvature of C at that point,
which is given in terms of the arclength parametrization x by

κ ¼ j _x � €x j ¼ j €x j : ð5Þ
For an arbitrary point on curve C at which κa0, the unit binormal
vector is defined by B¼ t�N. The unit tangent t, unit normal N,
and unit binormal B at each point of C, form the Frenet frame
ft;N;Bg at that point.

The torsion τ of C is defined by _B ¼ �τN, and is expressed in
terms of the arclength parametrization x as

τ¼ _x � ð €x � x
…Þ

j €xj2 : ð6Þ

The torsion τ of C describes the tendency of the curve C to move
out of its osculating plane at a given point, or, equivalently, it
measures the turnaround of the unit binormal B of C at a given
point. In general, a space curve is determined up to a rigid
translation, by its two locally invariant quantities: the curvature
κ and torsion τ, both in terms of the arclength parameter s.

On the boundary curve C of the surface S, the unit normal to
the surface is denoted by n. Also, since _x is a unimodular vector, its
arclength derivative €x is perpendicular to _x, and thus, can be
considered as a linear combination

€x ¼ κnnþκgn� _x; ð7Þ

Fig. 1. Mathematical identification of an open lipid bilayer as an open surface S
with boundary C¼ ∂S on which a Darboux frame has been shown. Also the
schematic arrangements of phospholipid molecules in an interior point on S and
at the vicinity of the edge C are depicted at a point.
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