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a b s t r a c t

The propagation of non-linear elastic anti-plane shear waves in a unidirectional fibre-reinforced
composite material is studied. A model of structural non-linearity is considered, for which the non-
linear behaviour of the composite solid is caused by imperfect bonding at the “fibre–matrix” interface. A
macroscopic wave equation accounting for the effects of non-linearity and dispersion is derived using
the higher-order asymptotic homogenisation method. Explicit analytical solutions for stationary non-
linear strain waves are obtained. This type of non-linearity has a crucial influence on the wave
propagation mode: for soft non-linearity, localised shock (kink) waves are developed, while for hard
non-linearity localised bell-shaped waves appear. Numerical results are presented and the areas of
practical applicability of linear and non-linear, long- and short-wave approaches are discussed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Elastic waves propagating in heterogeneous solids can undergo
the effects of non-linearity and dispersion. Non-linearity may arise
through geometrical, physical or structural mechanisms (e.g., Lur'e
[48]). We study a problem for which the non-linear behaviour of a
composite is associated with imperfect bonding conditions at the
interface between constitutive components. This is an example of
structural non-linearity, with the non-linearity directly related to
the presence of a microstructure. Dispersion on the other hand can
be classified as geometrical or structural. Geometrical dispersion is
typical for wave-guides and finite-size bodies (e.g., waves in beams
and plates). Structural dispersion may be caused by the hetero-
geneity of a composite solid, with successive reflections and
refractions of local waves at the matrix–inclusion interfaces
leading to scattering of the overall wave field.

Non-linearity induces a pumping of energy form the low- to the
high-frequency part of the spectrum, with higher-order modes
generated and continuous localisation of energy occurring, making
the wave front steeper. In contrast, dispersion provides scattering of
energy and decreases the slope of the wave front. When non-
linearity and dispersion act together, they may balance the influence
of each other [42]. In such a case, stationary non-linear waves of
permanent shape and velocity can propagate. Non-linear strain

waves play an important role in the mechanical behaviour of
composite materials and structures. An increase in non-linearity
leads to the formation of localised solitary waves. This process is
accompanied by essential strain amplitude growth, possibly resulting
in the development of local plastic zones and/or cracks. Therefore,
non-linear dynamic effects can become a crucial factor affecting
strength and durability of engineering structures.

In many cases, non-linear elastic moduli of heterogeneous
solids are very sensitive to the properties of microstructure (see,
for example, Zaitsev et al. [82]). Measuring the characteristics of
non-linear waves enables detection of very small variations of the
internal texture of the medium at a level not possible within a
linear framework Zumpano and Meo, [83], Polimeno and Meo [65].
This provides the possibility of developing new, more precise,
methods of the acoustic diagnostic and non-destructive testing in
engineering, geophysics, biomechanics and other areas dealing
with heterogeneous materials and structures.

The propagation of non-linear strain waves in elastic solids has
been intensively studied. For a comprehensive review of the subject
we refer to the books by Jeffrey and Engelbrecht [38], Maugin [51],
Samsonov [73], Erofeev [29], and Porubov [66]. Many authors
considered homogeneous systems, with dispersive properties mainly
determined by geometrical factors. At the same time, the effect of
structural dispersion, related to the scattering of non-linear waves by
the microstructure, were not studied in great detail.

The influence of the microstructure can be modelled by allowing
the elastic medium additional internal degrees of freedom, an idea
originally proposed over 100 years ago by Cosserat and Cosserat [21]
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and Le Roux [44]. Following Cosserat theory, a number of higher-
order continuum models were developed by Mindlin [53], Sun et al.
[77], Herrmann and Achenbach [37]. More recently, similar
approaches were adopted to describe the propagation of non-linear
strain waves in miscrostructured solids [27,28,68,67,69]. A recent
review of the modelling of heterogeneous media in terms of internal
variables was presented by Berezovski et al. [12,13].

From a mathematical viewpoint, the aforementioned approaches
supplement the constitutive equations of motion with some addi-
tional higher-order gradient terms accounting for the effects of
dispersion. The coefficients at the dispersive terms represent what
might be thought of as phenomenological parameters. In some cases
these may be determined experimentally; however, for most
industrial materials their magnitudes remain unknown. An alter-
native way to predict the influence of microstructures is provided by
the asymptotic homogenisation method (AHM). According to this
approach, physical fields in a spatially periodic heterogeneous
medium are represented by a two-scale asymptotic expansion in
powers of a small parameter η¼ l=L, where l is the size of the unit
cell and L is the typical wavelength. This leads to a decomposition of
the final solution into global and local components; the latter are
evaluated from a recurrent sequence of cell boundary value pro-
blems (BVPs). Application of the volume-integral homogenising
operator allows us to obtain a homogenised constitutive equation
that describes the macroscopic behaviour of the medium. It is
important to note that the coefficients of the homogenised
equation (so-called effective moduli) are evaluated based on infor-
mation about the properties of the components and the geometry of
the microstructure. Thus, in contrast to Cosserat-type approaches,
the homogenised model incorporates data about the internal
composition of the material.

From its conception, the AHM was intended for the determina-
tion of quasi-static properties of heterogeneous media and struc-
tures (e.g., Bensoussan et al. [10], Sanchez-Palencia [74], Bakhvalov
and Panasenko [9], Kalamkarov et al. [39]). Taking into account
higher-order terms, with respect to η, extended the area of
applicability of the homogenised models and provided a mechan-
ism to predict the effect of structural dispersion [15,17,32,3,76,8].
Non-local effects resulting both from high-anisotropy and high-
contrast of composite structures were studied by Cherednichenko
et al. [18], Smyshlyaev [75], Soubestre and Boutin [76]. It should be
noted that macroscopic dynamic equations obtained by the AHM
are valid only in the long-wave case, when l{L. Recently, Craster
et al. [22] have shown a subtle analogue between the long-wave
asymptotic procedures underlying approximate formulations for
periodic media and for functionally graded wave-guides. The
conventional AHM seems to be a counterpart of the classical
theories for thin plates, shells and rods. A theoretical framework
for the asymptotic theories of long wave motion in plates and
layered media was developed by Rogerson et al. [70,72] Rogerson
and Prikazchikova [71], Lutianov and Rogerson [49], Mukhomo-
dyarov and Rogerson [57]. Homogenisation of non-linear dynamic
problems was considered by Andrianov et al. [7,5].

When the wavelength of a travelling signal decreases and
becomes comparable to the size of the microstructure, a heteroge-
neous elastic solid exhibits a complicated sequence of pass and stop
frequency bands. In the literature, they are also referred to as phononic
bands (by analogy with the photonic bands arising for electromag-
netic and optical waves in heterogeneous dielectric media). Thus, the
composite plays the role of a discrete wave filter. If the frequency falls
within a stop band, a stationary wave is excited and neighbouring
heterogeneities (e.g. particles) vibrate in alternate directions. At a
macrolevel, the amplitude of the global wave attenuates exponen-
tially, so no propagation is possible. Phononic bands can be theore-
tically predicted using the Floquet-Bloch approach [14]. This approach
has been documented in the book by Brillouin [16], 2nd ed. and

utilised by many authors (see, for example, Movchan et al. [56,54,55],
McPhedran et al. [52] and references therein).

Craster et al. [24,25,23] and Nolde et al. [61] proposed a
generalisation of the AHM making it suitable for the analysis of
high-frequency waves. The key point was to choose a zero-order
approximation, not at the quasi-static limit (η-0), but at the
edges of the high-frequency phononic bands.

In this present paper, we apply the AHM to the modelling of
anti-plane shear waves propagating in a fibre-reinforced compo-
site material with imperfect interface bonding between the matrix
and fibres. For engineering materials, the properties of the inter-
face may be subjected to various factors, such as the presence of
thin coating layers, chemical reactions or mechanical damages.
From the mathematical viewpoint, the effect of imperfect bonding
can be predicted by assuming that the displacement jump across
the interface is related to the interfacial stress by a certain
cohesion function. This approach is general and can describe
different types of interfaces independently of the physical reasons
of the debonding.

In the simplest case, the cohesion function is assumed linear,
the interface then acting like an elastic spring. The spring-type
interface model was originally proposed by Goland and Reissner
[33]. In the theory of composites, it was first introduced by Mal
and Bose [50] and later employed by a number of authors.
Variational formulations for the imperfect bonding conditions
were presented by Hashin [36], Lipton and Vernescu [47]. Limiting
cases of very soft and very stiff interfaces were analysed by
Benveniste and Miloh [11]. Needleman [58,59], Tvergaard
[79,80], Espinosa et al. [31,30] considered more sophisticated
cohesion functions and simulated various scenarios of the debond-
ing process. While reducing the cohesion, the stress field (sup-
ported by the interface) increases in magnitude, achieves a
maximum, and ultimately falls to zero when complete separation
occurs. It is therefore possible to track the evolution of the
debonding process from its initial onset to complete separation
and subsequent formation of voids. Non-linear interfaces were
considered by Levy and Dong [46], Levy [45], Nguyen and Levy
[60]. An asymptotic simulation of the imperfect bonding was
presented by Andrianov et al. [2,4].

It should be noted that most of the interface models include a
number of phenomenological parameters: the maximal interfacial
traction, characteristic lengths of the interfacial displacements, inter-
face shear-to-normal strength ratio, etc. Such quantities can not
usually be identified a priori. At the same time, due to evident
experimental difficulties. there is still very little effort to measure
cohesive laws in real materials. As a successful example, we refer to
Tan et al. [78] who developed an experimental approach to deter-
mine the microscopic cohesive law in composite high explosives.

In our present contribution we specifically study a weakly non-
linear interface, with a cohesion function represented by a power
series expansion in terms of non-dimensional displacement jumps.
The paper is organised as follows. In Section 2, an asymptotic model
of the imperfect bonding is proposed and the input BVP introduced.
In Section 3, the higher-order asymptotic homogenisation procedure
is developed and the macroscopic non-linear wave equation
obtained. In Section 4, the analytical solution for stationary non-
linear strain waves is derived in terms of elliptic functions. The
analysis of the obtained results and numerical examples are pre-
sented in Section 5. Section 6 is devoted to the conclusions.

2. Asymptotic model of the imperfect bonding and input BVP
problem

Let us consider a unidirectional fibre-reinforced composite
consisting of an infinite matrix Ωð1Þ and a periodic square array
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