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a b s t r a c t

Dynamics of a dumb-bell of a variable length in a central field of Newtonian attraction is considered. It is
assumed that the body moves in a plane fixed in the absolute space and passing through an attracting
center. The law of length's variation providing an existence of stationary configurations is pointed out.
For these configurations the dumb-bell forms a constant angle with a local vertical passing through the
center of mass of the dumb-bell, which moves in an elliptic orbit similar to the Keplerian. In particular,
the mentioned constant angle may be equal to zero. In contrast to previous investigations (Burov and
Kosenko, 2011 [8,10], Burov, 2011 [9]) the problem is solved within the exact formulation, without
supplementary simplifying assumptions concerning smallness of the dumb-bell in comparison to its
distance from the attracting center.

& 2015 Published by Elsevier Ltd.

1. Introduction

Investigation of orbital systems with a variable mass distribu-
tion arises to early 1960s. In particular, a rule for the mass
redistribution allowing to keep fixed a direction to the attracting
center in the axes fixed in the body was proposed by V.A. Sarychev
and W. Schiehlen within a so-called “satellite approximation” (see
also [27–30,20]). For the dumbbell-like body of variable length
necessary conditions of stability of the radial configuration were
studied in [25]. These results were rediscovered and partially
completed in [9,10]. Another aspect of the orbital dynamics of
bodies with a variable mass distribution relates to possibility of
using this redistribution for variation of orbital parameters. Its
investigation arising from [4,13] (see also [6]) is a subject of some
modern publications (cf. [17,2,14]). The third aspect relates to
problems of deployment – retrieval of orbital tethered systems
with tethered elements of a finite mass (cf. [11,12,22]). Finally
there are investigations devoted to using of dumbbell-like bodies
of a variable length for verification of relativistic hypothesis [19,7].

2. Posing a problem

Consider plane motions of a dumbbell-like body P1P2 of the
length ℓ in a central field of Newtonian attraction. Assume that the

masses m1 and m2 being located at the endpoints of the dumbbell
P1 and P2 respectively. Denote as O an attracting center, and as C a
center of mass of the dumb-bell. Position of the center of mass is

given by polar coordinates ðr;νÞ, where r¼ OC
�!��� ���, and ν is an angle

between an axis passing through the attracting center, and the

vector OC
�!

. Denote by φ the angle between the vector OC
�!

and the
dumb-bell, see Fig. 1. Suppose the dumb-bell is subjected by the
force F, such that the relation

f ðℓ; rÞ ¼ ℓ�ℓðrÞ ¼ 0; ð1Þ

holds true in all time of motion. It means that the length of the
dumb-bell depends only on the distance between its center of
mass and the attracting center.

Kinetic energy of the system reads

T ¼ 1
2 m _r2þr2 _ν2

� �
þμ _ℓ

2þℓ2 _νþ _φ
� �2� �h i

;

m¼m1þm2; μ¼ m1m2

m1þm2
: ð2Þ

Since the distances OP1 and OP2 remain invariable under
reflection of the system with respect to the ray OC, then the
potential energy reads

U ¼ �GM
m1

ρ1
þm2

ρ2

� 	
¼ Uðr; cÞ; c¼ cosφ;

ρ1 ¼ r2�2μ1ℓrcþ μ1ℓ
� �2� �1=2

; μ1 ¼
m2

m1þm2
;
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ρ2 ¼ r2þ2μ2ℓrcþ μ2ℓ
� �2� �1=2

; μ2 ¼
m1

m1þm2
: ð3Þ

Then the equations of motion

d
dt

∂L
∂ _x

¼ ∂L
∂x
; xA r;ν;φ


 �
d
dt

∂L
∂ _ℓ

¼ ∂L
∂ℓ

þF; L¼ T�U ð4Þ

can be presented explicitly as

m€r ¼mr _ν2�∂U
∂r

; ð5Þ

d
dt

mr2 _νþμℓ2ð _φþ _νÞ� ¼ 0; ð6Þ

d
dt

μℓ2ð _φþ _νÞ� ¼ ∂U
∂c

s; s¼ sinφ: ð7Þ

μ €ℓ ¼ μℓð _φþ _νÞ2�∂U
∂ℓ

þF: ð8Þ

Since for xA r; c;ℓf g
∂U
∂x

¼ ∂U
∂ρ1

∂ρ1

∂x
þ ∂U
∂ρ2

∂ρ2

∂x
;

∂U
∂ρ1

¼ GM
m1

ρ2
1

;
∂U
∂ρ2

¼ GM
m2

ρ2
2

;

∂ρ1

∂r
¼ r�μ1ℓc

ρ1
;

∂ρ2

∂r
¼ rþμ2ℓc

ρ2
;

∂ρ1

∂c
¼ �μ1ℓr

ρ1
;

∂ρ2

∂c
¼ μ2ℓr

ρ2
;

∂ρ1

∂ℓ
¼ μ1

�rcþμ1ℓ
ρ1

;
∂ρ2

∂ℓ
¼ μ2

rcþμ2ℓ
ρ2

;

then

∂U
∂r

¼ GM r
m1

ρ3
1

þm2

ρ3
2

 !
þμℓc � 1

ρ3
1

þ 1
ρ3
2

 !" #
; ð9Þ

∂U
∂c

¼ GMμℓr � 1
ρ3
1

þ 1
ρ3
2

 !
; ð10Þ

∂U
∂ℓ

¼ GMμ rc � 1
ρ3
1

þ 1
ρ3
2

 !
þℓ

μ1

ρ3
1

þμ2

ρ3
2

 !" #
: ð11Þ

To determine a force F allowing to realize relation (1), differ-
entiate twice this relation with respect to time and substitute
these expressions for derivatives €r , €ℓ from (5) and (8). Then

_ℓ ¼ dℓ
dr

_r ; €ℓ ¼ d2ℓ

dr2
_r2þdℓ

dr
€r ;

by consequence,

μ�1 μℓð _φþ _νÞ2�∂U
∂ℓ

þF
� �

¼ d2ℓ

dr2
_r2þdℓ

dr
r _ν2�m�1∂U

∂r

� 	

and finally

F ¼ ∂U
∂ℓ

�μℓð _φþ _νÞ2þμ
d2ℓ

dr2
_r2þdℓ

dr
r _ν2�m�1∂U

∂r

� 	" #
: ð12Þ

The force F realizing the so-called servoconstraint is not
conservative.

Remark 1. The theory of systems subjected to servoconstraints
arises to investigations of H. Béghin [3]. There exist numerous
publications devoted to the development of this theory, in parti-
cular [24,26,16,15].

3. Area integral and change of time, according to Binet–Levi-
Civita–Nechvile

The coordinate ν is cyclic. Hence, by virtue of Eq. (6) a function

mr2 _νþμℓ2ð _φþ _νÞ ¼ C ð13Þ
is a first integral of equations of motion. Here and below the
constant C is assumed being positive. Expression (13) can be
written in the differential form:

mr2 dνþμℓ2ðdφþdνÞ ¼ C dt: ð14Þ
This allows to represent a speed of variation of the angle ν as

_ν ¼ C
mr2þμℓ2þμℓ2φ0; ð Þ0 ¼ d

dν
: ð15Þ

For the motions satisfying condition

mr2þμℓ2þμℓ2φ040; ð16Þ
the angle ν can be used as an independent variable. Often this
condition is fulfilled. In particular, it is fulfilled for the motions,
such that jφ0 j51. Then Eqs. (5) and (7) can be represented as

m _ν
d
dν

_νr0½ � ¼mr _ν2�∂U
∂r

; ð17Þ

_ν
d
dν

μℓ2 _νðφ0 þ1Þ� ¼ ∂U
∂c

s; ð18Þ

where the quantity _ν is to be replaced by its value from (15).

Remark 2. The idea of using a true anomaly as an independent
variable in problems of the orbital dynamics, turned out being
fruitful, arises to investigations of Jacques Philippe Marie Binet,
where, as is known, it was used for investigation of motion of a
massive point in a central field, in particular, for integration of
equations of motion in the Kepler problem. Further it was used by
Levi-Civita in the three-body problem [18] and by Nechvile [23] in
the restricted elliptic three-body problem (see also [21]). Starting,
probably, from publications of Beletsky [5], the true anomaly is
effectively used in problems of the attitude motions of satellites in
an elliptic problem. The idea of such usage is mainly based on the
observation within the satellite approximation independence of
motion of the center of mass upon body's motion about its center
of mass.

4. Main assumption

Suppose ℓ¼ λr. Then

_ν ¼ C

r2 mþμλ2ð1þφ0Þ
� �; ð Þ0 ¼ d

dν
: ð19Þ

Fig. 1. A dumb-bell in the orbital plane.
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