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a b s t r a c t

Using an approximate method, families of non-linear steady-traveling periodic waves in a two-layer
falling film have been found for the first time. Computed waves have qualitatively similar behavior as
that of those found in homogeneous films but the quantitative characteristics of the waves strongly
depend on additional similarity parameters in the two-layer films. In particular, the average location of
the interface affects the bifurcation scheme of the waves.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Interest in two-layer (and multilayer) films is stimulated by
applications, in particular, in technologies providing mass transfer
between two liquids. Due to difficulty of the problem, most attention
has been paid to linear models and weakly non-linear models.

Long wave instability of the two-layer flow was studied in [1] in
the case of equal dynamic viscosities and different densities of the
liquids. The asymptotic method developed in [2] was used to
analyze the dependence of the neutral curves for the surface mode
on the density ratio and the depth ratio. The interface mode was
analyzed in [3], and the general case of both modes in flow with
viscous stratification was considered in [4] using the same method.

The linear stability at arbitrary values of the similarity parameters
was investigated for the first time in [5] where the generalized Orr–
Sommerfeld problem was solved numerically. Two unstable modes
associated with the free surface and the interface were computed
at moderate values of the Reynolds number. It has been shown that
the interface mode corresponds to the Rayleigh–Taylor instability
depending on the ratio of the liquids' densities in the case of small
wall inclination. It was also found that the interface mode is unstable
if the less viscous liquid is in the layer adjacent to the free surface,
and this mode is stable if this liquid is adjacent to the solid substrate.

Later the Orr–Sommerfeld problem was used in [6] to investi-
gate the interface and surface modes without taking into account
both interface and surface tensions, or the surface tension only. In
[7,8] the temporal and spatial growth rates were also calculated
without considering the interface and surface tensions. In parti-
cular, the result of [5] about the absolute instability in the two-
layer flow as the Rayleigh–Taylor instability was confirmed.

The limit case of zero value of the Reynolds number and the
absence of the surface and interface tension was analyzed in [9]
using an asymptotic method. Mechanism of the surface and long
interfacial waves was discussed in [10,11] at zero and very low
values of the Reynolds number.

In parallel with the papers directly dealing with the gravity-
driven two-layer film flow, there are many works dealing with two
types of flows, falling films and interface waves, which are relevant
to the considered problem.

Film flow down a vertical plane at moderate flow rates, or a
falling film, has been considered in numerous experimental and
theoretical investigations. Falling films demonstrate a wide variety
of flow regimes, which are very sensitive to flow conditions. The
first systematic experimental investigations [12] demonstrated the
existence of two principal wave types: periodic sinusoidal waves
and solitary waves, traveling with constant velocity. These so-
called regular waves can take on different shapes, amplitudes and
velocities depending on flow conditions.

The principal method of theoretical investigation based on the use
of a thin layer approximation was suggested in [13]. The majority of
theoretical results used to describe experimental data were reached in
the framework of the Kapitza–Shkadov evolution equations derived in
[14] by the integral method. In particular, numerous types of steady-
traveling waves in the framework of this approximation, see [15–23]
and references in these publications, have been computed. Detailed
description of the film theory can be found in monographs [24,25].

Another relevant area of research is the interface instability
between two viscous flows. This type of instability was first studied in
[26] by the asymptotic method [2] in the case of the plane Couette–
Poiseulle flow. In a specific case of liquids with equal densities, it was
shown that the flow is unstable for any small value of the Reynolds
number, and the instability is supplied by either the moving boundary
or the pressure gradient. In [27], a parallel flow of two viscous liquids
of equal density in infinite domains divided by a flat interface was
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studied, and it was shown that there exists a short wave instability in
the absence of the surface tension. This mechanism of instability is
comparatively small, and it can be stabilized by the surface tension. As
illustrated in [28], the interface tension should be unrealistically small
to observe the interface instability in the unbounded stratified Couette
flow. In the case when one of the liquids is bounded by a wall, and
another liquid is unbounded, a long wave interface instability was
found in [29]. In [30], a weakly non-linear equation modeling the
plane Couette–Poiseulle flow of two liquids was derived, and some
examples of wave evolutionwere computed. A special case of the two-
layer Couette flow with high dynamic viscosities ratios was modeled
in [31] using an evolution equation derived by the integral method.
The integral method was also used to model non-linear solitary waves
in two-layer plane flows driven by the gravity [32] and the pressure
[33]. Some attention was also paid to stability of interface waves in
[34] where a gas–liquid waves were studied. Solitary and periodic
waves in an interface between two-liquids were observed in a
cylindrical Couette flow at high ratio of the dynamic viscosities [35]
and a microchannel [36].

In this paper, we use the integral method to find steady-traveling
periodic waves in the two-layer film flow.

This paper is organized as follows: in Section 2, the evolution
equations are derived to model flows at real-life values of the
similarity parameters. In Section 3, the method used to compute
steady-traveling waves is given, and examples of the waves are
shown. Finally, conclusions are provided in Section 4.

2. Evolution equations

2.1. Equations and boundary conditions

To model two-layer film flowing down on a vertical wall, the
Cartesian coordinate system (x,y) is introduced with the x-axis
pointed down and the y-axis pointed into the film bulk. We assume
that both liquids are immiscible, incompressible and viscous, and
we will refer the liquid attached to the wall as ‘1’ and the liquid
having the free surface as ‘2’.

The flow is described by the full Navier–Stokes equations and
relevant boundary conditions for the velocity components u and v

corresponding to the axes x and y, respectively, the pressure p, the
first layer thickness hð1Þ and the film thickness hð2Þ. To formulate
the equations and boundary conditions in the dimensionless form,
we take film thickness Hc of the waveless flow as the length scale,
and the average film velocity Uc ¼Qc=Hc, where Qc is the total flow
rate of the film, as the velocity scale. Then dimensional variables
are converted into a dimensionless form as
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where κ is the stretching parameter defined below.
The dimensionless Navier–Stokes equations and the problem

boundary conditions are written in the following form:
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where the notation ½f �21 � f 2� f 1 denotes the jump in quantity f
from the value in the first liquid, f ð1Þ, to the value in the second,
f ð2Þ. The boundary conditions in (1) include the normal, pnn, and
tangential, pnτ , stresses and the curvatures ςκ which are calculated
as follows:
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The system (1) and (2) contains the following dimensionless para-
meters:

Re¼UcHc
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; We¼ ρð2ÞU2
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0 ¼ 1, ρð1Þ

0 ¼ ρ0, ν
ð2Þ
0 ¼ 1 and νð1Þ0 ¼ ν0, where ρðjÞ and νðjÞ;

j¼ 1;2 are the densities and viscosities of the liquids, respectively,
σð1Þ and σð2Þ are the interface and surface tensions, and g is gravity.

The system (1) and (2) has a solution, denoted by capital letters
below, describing the steady waveless flow:
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have been used. Then the flow rates in the first layer, Q ð1Þ, and the
second layer, Q, are calculated

Q ð1Þ ¼
Z H

0
Uð1Þ dy¼ Re H2

2ν0Fr2
1
ρ0

þ 2
3
� 1
ρ0

� �
H

� 	
;

Q ¼
Z 1

H
Uð2Þ dy

¼ Re ð1�HÞ
Fr2

1
3
þ 1

ρ0ν0
�2
3

� �
Hþ 1

3
þ 1
2ν0

� 1
ρ0ν0

� �
H2

� 	
: ð3Þ

Finally, we find the total flow rate in the two-layer film
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Since we have taken the average velocity of the waveless flow
as the velocity scale, the dimensionless total flow rate is Q ð2Þ ¼ 1
and thus Fr2 ¼φ Re. This relation allows us to eliminate the Froude
number, and calculate the scale velocity Uc ¼φgH2

c =ν
ð2Þ.
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