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a b s t r a c t

Wave fields for near homoclinic, single mode rogue-wave solutions of the periodic nonlinear Schrödinger
equation are presented. Parameters of candidate solutions are estimated and refined through an ei-
genvalue solution procedure. An overview of the estimation and refining procedure used by the authors
is provided. Solutions are scaled to facilitate experimental implementation. The continuous wavelet
transform is used to carry out time–frequency analyses and the results obtained are demonstrative of the
dispersion relation as well as the time varying side band energy transfer associated with the Benjamin–
Feir instability. The analysis framework and approach used are validated with the Peregrine solution.
Other extreme wave solutions are analyzed as well. The framework presented here could serve as a basis
for experimental investigations into single mode rogue waves as well as other localizations in wave
fields.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction and background

In the context of many systems, ranging from the ocean [1,2] to
optical fibers [3], extreme waves have been reported. These waves
are characterized by extreme amplitudes, which can occur inter-
mittently in time and space [4]. The Benjamin–Feir (modulational)
instability [5] has been proposed as one of the mechanisms for
rogue-wave formation [6]. Given that the nonlinear Schrödinger
equation (NLSE) exhibits the Benjamin–Feir instability, the NLSE
has been widely studied as a model for extreme wave behavior.
Other models include the Dysthe, Kadomtsev Petviashvili (KP),
and Korteweg de Vries (KdV) equations. While many solutions and
solution families of the NLSE are known, experimental investiga-
tions have been limited. Several groups have carried out experi-
ments, in which rogue waves have been provoked in wave tanks
[1,2,7]. The typical focus of these experiments has been only on
the rogue-wave amplitude. On the other hand, Onorato et al. [8–
10] and Osborne [11] have performed laboratory experiments to
investigate the presence of modulational instability and rogue
wave modes in random wave spectra.

While infrequent, oceanic rogue waves are gaining attention
due to their destructive nature. Limited descriptive quantitative
data has been recorded [12]. In this work, the authors present a
method to determine the parameters of a family of single mode
near homoclinic solutions to the NLSE. The first step in the pro-
cedure provides a map of eigenvalues which leads to potential

solutions. This eigenvalue map may allow researchers to explore
new solutions to the NLSE, including rogue-wave solutions. The
solutions are derived from a pre-filtering (predictive) and eigen-
value solving (corrector) procedure for the NLSE, as detailed in a
recent effort by the authors [13].

Here, for brevity, only a short review of some of the most sig-
nificant results related to rogue-wave solutions to the NLSE is
provided. Tracy [14] presented some of the first analytic solutions
to the NLSE. Akhmediev and Korneev [15] determined a family of
single parameter solutions. In studies of the nonlinear Schrödinger
equation with periodic boundary conditions, homoclinic (or
breather) solutions have been used to model rogue waves [16,17].
Islas and Schober [17] were the first to correlate the likelihood of
rogue waves with the closeness to homoclinic solutions. Osborne
[18] has contributed significant work on hyperfast modeling of
rogue waves and presented an analysis of nonlinear Fourier modes
of a wavefield, identifying rogue modes. The results have im-
plications in other domains such as fiber optical cables as detailed
in [1,19]. A comprehensive review of past contributions and the
state of the art related to rogue waves can be found in several
review papers (e.g., [6,20,21]).

In the present work, the authors aim to advance the identifi-
cation and analysis of rogue waves and soliton behavior of the
NLSE. As detailed in a recent effort [13], the authors present a
procedure, not available elsewhere in the literature, which allows
for the identification of spectral parameters of single mode near
homoclinic theta function based solutions to the NLSE. While this
solution family is already known, examples of variations in the
parameters governing the solutions are not readily available in the
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literature. Furthermore, connections between the features of the
numerically generated eigenvalue space and the solutions ap-
pearing therein have been seldom highlighted. The eigenvalue
map presented in this work provides a quantitatively accurate
overview and context of the behavior of the solution space from
which these solutions originate. The particular solutions presented
here, and the insights provided by the mapping procedure, can
substantially enhance the understanding and stimulate further
investigations into NLSE solutions and associated rogue waves.

Finally, wavelet analyses of rogue-wave solutions are used to
characterize evolution in the time–frequency domain. This analysis
helps reveal the dispersion relation; that is, low frequency com-
ponents are identified to travel faster than high frequency com-
ponents of rogue waves. Furthermore, the time variation of the
energy in the side bands associated with a Benjamin–Feir type
instability is presented. This analysis is validated on the Peregrine
solution and applied to other single mode rogue-wave solutions. It
can be easily applied by other researchers to analyze simulated
and experimental results. The Peregrine breather has been de-
monstrated experimentally in a water tank; however, this fact
alone does not prove that hydrodynamic surface wave behavior is
governed by the NLSE. In fact, the Peregrine solution is only one of
many solutions to the NLSE and other wave equations. In order to
more conclusively verify the governing model of surface waves,
other NLSE solutions would need to be experimentally studied.
The predictive results and analysis detailed in this effort can be
used to facilitate such experimental efforts.

The remainder of this paper has been arranged as follows. An
overview of the eigenvalue map is provided in the next section,
along with illustrations of several features of the map. A solution
similar to the Peregrine breather is demonstrated. Following this
discussion, solutions quite different from the Peregrine breather
are presented. In the next section, for a particular spectral para-
meter variation, the transition from a rogue wave to an ex-
aggerated wave formation is shown. In the fifth section, solutions
with physical scaling similar to water waves in published experi-
mental investigations are presented. Finally, continuous wavelet
analysis is applied to several solutions to reveal time–frequency
behavior including the dispersion relation and the intermittent
transfer of energy among the carrier frequency and side bands.
Through the discussion presented in the different sections, the
authors expect to demonstrate the utility of the solution genera-
tion procedure and analysis. Concluding remarks are collected and
presented together at the end.

2. Eigenvalue solution method

2.1. Candidate solutions

A brief overview of the procedure to generate the map of
candidate solutions to the NLSE is presented in this section. For
further details and examples, the reader is referred to the group's
previous effort [13]. The scaled NLSE, a dimensionless equation,
takes the form

σ− + | | = ( )iu u u u2 0 1T XX
2

where ( )u X T, is the complex wave envelope field with periodic
boundary condition ( ) = ( + )u X T u X L T, , for ≤ ≤X L0 , T is the
time, X is the spatial variable, = −i 1 , and the subscripts indicate
the associated partial derivatives. The focusing case requires
σ = − 1 while σ = 1 yields the defocusing case. Space periodic
spectral solutions to the NLSE can be described as
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where Θ τ δ( | )±X T, , is a Riemann theta function [14,22,23]. A single
unstable mode (N¼2) is considered by expressing Θ τ δ( | )±X T, , as a
two-dimensional theta function defined as
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The parameters governing the theta function (Kn, Ωn, and δ±)
are defined in terms of A, λR, λI, ϵ0, and θ, which are referred to as
spectral parameters of the near homoclinic solution. Following the
notation used in the literature [11], the spectral parameters are
defined as
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Initially, the solution space is defined with A¼1, θ = 0, and
ϵ ≤ 0.050 . These parameters are refined in a subsequent step
leaving λR and λI as the only free parameters governing the initial
function selection. Potential successful parameter combinations
are determined by evaluating the periodicity of ( )u X, 0 over an
interval nL (where =n 1, 2, 3) for a given λ λ( ),R I . The periodicity of
all solutions is tested over the entire two-dimensional grid of
(λ λ,R I) values. The periodicity associated with each combination of
(λ λ,R I) is estimated independently and thus carried out in parallel
via a graphics processing unit implementation, as detailed in the
authors' recent work [13]. The resulting map of λ λ( ),R I pairs which
form periodic ( )u X T, functions with L¼12 is shown in Fig. 1.
Periodic functions, and hence parameter values of potential solu-
tions, are displayed in white on the candidate map. The dark re-
gions indicate λ λ( ),R I pairs which do not result in periodic func-
tions, and hence are not guaranteed to be solutions. If one elim-
inates these regions and focuses on the light regions, one is
guaranteed to find solutions to the NLSE, enables more efficient
parameter space exploration. Map variations with respect to L are
described in a later section.

2.2. Eigenvalue solution

Given a particular choice of ( λ λ,R I) from the map described
above, the spectral parameters of a near homoclinic solution can
be determined by solving the following spectral eigenvalue pro-
blem:
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The eigenvalue solution procedure closely follows prior work
[11,13]. The eigenvalue problem of Eq. (9) is recast as a Floquet
problem and a constant potential is used to determine the spectral
eigenfunction over a given interval. The monodromy matrix is
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