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a b s t r a c t

The present work investigates the micropolar fluid flow due to a permeable stretching sheet and the
resulting heat transfer. Unlike the existing numerical works on the flow phenomenon in the literature,
the prime interest here is to analytically work out shape of the solutions and identify whether they are
unique. Indeed, unique solutions are detected and presented in the exact formulas for the associated
boundary layer equations. Temperature field influenced by the microrotation is also mathematically
resolved in the cases of constant wall temperature, constant heat flux and Newtonian heating. To dis-
cover the salient physical features of many mechanisms acting on the considered problem, it is adequate
to have the analytical velocity and temperature fields and also closed-form skin friction/couple stress/
heat transfer coefficients, all as given in the current paper. For instance, the practically significant rate of
heat transfer is represented by a single formula valid for all three temperature cases.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Owing to significant engineering and practical applications of
non-Newtonian fluids like molten polymers, blood, fluid suspen-
sions, food and cosmetic, researchers have recently paid much
attention to one such fluid, named micropolar fluid, after the
model offered by Eringen [1]. The traditional velocity vector is
coupled with a microrotation vector in the flow equation of mi-
cropolar fluids. Hence, micropolar fluids are capable of under-
standing the flow phenomena at microscale and rotation as in-
ferred from the books by Lukazewics [2] and Eringen [3].

Pioneering work of Crane [4] has lead to many subsequent
research activities on stretching bodies, since it finds practical
applications, for instance, in textile industries in polymer proces-
sing and in manufacturing process of glass sheets. Literature is
now full of such numerical studies, to cite a few are Wang [5],
Siddheshwara and Krishna [6], Nazar et al. [7,8], Ishak et al. [9],
Chen [10], Ishak [11] and Bhattacharyya et al. [12]. Micropolar fluid
flow phenomenon with variable heat flux effects was analyzed in
Ishak et al. [13] and the porous medium case was investigated in
Rosali et al. [14]. Analytical means of working out the solution of
flow over stretching surfaces were also exploited, see for instance,
Kelson and Desseaux [15] and the recent articles by Turkyilma-
zoglu [16,17] and [18,19] amongst many others.

Although, in the case of Newtonian fluid there are many pub-
lications dealing with the exact solution, as far as the fluid flow

problem over a stretching sheet regarding the micropolar fluid
effects is concerned, it has not been treated analytically in an aim
to find exact solutions, except perhaps the perturbation work in
[15]. This is due to the coupled nature of governing micropolar
flow motion containing highly nonlinear terms. Therefore, people
are believed to be diverted to numerical means. However, it was
very recently proved in [20] that it is quite possible to achieve
closed-form solutions for the micropolar fluid flow motion over a
shrinking sheet as for the traditional Newtonian flow. As a con-
sequence, the appearance of dual solutions over a shrinking sheet
was successfully explained through the exact flow domain. The
prime motivation here is hence to investigate whether exact
analytical solutions can also be found for the flow of micropolar
fluid over a porous stretching sheet. Such solutions may also help
us resolve the temperature field exactly, when the wall tempera-
ture or the heat flux is constant as well as when the Newtonian
heating is applied. Indeed, as opposed to the existing numerical
solutions in the literature, exact solutions were found for both
flow and temperature fields. Moreover, such micropolar fluid so-
lutions are proved to be unique, unlike the double solution nature
of the corresponding viscous flow for the shrinking surface. Fur-
thermore, closed-form analytical expressions for the skin friction
coefficient, couple stress coefficient and Nusselt number are ob-
tained, which are very helpful to examine diverse physical prop-
erties of micropolar fluids in engineering applications of non-lin-
ear mechanics, as such in biological fluids, in crystals and in lu-
bricants. One may also refer to the recent pulsating flow work of
[21] and other physical applications as studied in [22], to under-
stand the role of porous stretching sheet in micropolar theory and
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heat transfer in micropolar liquid. Finally, it is believed that the
analytical results presented here will shed light upon the further
research to be conducted on micropolar fluids and their not yet
discovered physical features, such as the slip velocity and tem-
perature jump mechanisms.

2. Formulation of the problem

Sufficient number of sources in the literature has successfully
formulated the physical problem of micropolar fluid flow motion
over a stretching surface. For the sake of being concise and ex-
erting more of the efforts to the derivation of exact solutions, the
final similarity equations of coupled nature that govern the
boundary layer flow of micropolar fluid motion and also tem-
perature field (relevant to constant wall temperature) (see for
example, [8,11]) are given by
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which are supplemented together with the boundary conditions
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It should emphasized here that the above system is different from
that of [20], since the latter dealt with the shrinking wall case. To
briefly state, η is a scaled boundary layer coordinate, η′ ( )f is the
similarity velocity component, η( )h is the similarity microrotation
or angular velocity, s is the wall permeability parameter with <s 0
for the wall suction and >s 0 for the wall blowing, material
parameter is K and m represents a measurement for the con-
centration of microelements, respectively. It is further well-docu-
mented that weak microelement concentrations without the
ability of rotation of microelements are represented by m¼0,
weak microelement concentrations with stress tensor having no
antisymmetric component are denoted by m¼1/2, and the
boundary layer flow in turbulent state means m¼1. Moreover, θ is
the scaled fluid temperature and Pr is the usual Prandtl number. It
is noted that when K is set to zero the classical Newtonian viscous
fluid flow and heat problem over a stretching sheet is recovered.

3. Exact analytical solutions

The system of Eqs. (2.1)–(2.2) was numerically solved before by
many researchers to explore the physical properties of micropolar
fluid flow motion. Instead, full solutions in analytic are targeted
here.

3.1. Solution of the flow and microrotation fields

In the stretching sheet problem concerning the Newtonian
fluid flow, pursuing the exact solution of Crane [4], Pop and Na
[23] obtained nice exact formulae representing the boundary layer
flow in different flow configurations. Since the micropolar fluid
flow equations (2.1)–(2.2) convey the traditional Newtonian flow
character in the limit →K 0, the aforementioned realistic solutions
should also cover effects of non-Newtonian behavior, at least for
some particular cases. Bearing this in mind, it can be assumed that
system (2.1)–(2.2) possesses solutions of exponential type
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where, the parameter λ is to be determined so that the system
(2.1) and boundary conditions (2.2) are all satisfied. Thus, to meet
the infinity boundary conditions λ must be positive. Moreover, the
following algebraic system of equations results from a direct
substitution of (3.1) into (2.1)
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Solutions of (3.2), in turn, lead to
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By inspection, it is observed that exponential type physical solu-
tions (3.1) exist when m¼1/2 and also for the rest of m being
dependent upon the physical parameters K and s. Since K is as-
signed to be positive in practical computations, a unique solution
is anticipated for ∈s R. This is quite distinct from the viscous fluid
flow induced by a shrinking surface for which dual solutions of
exponential type (3.1) were found see, for instance, the recent
articles by Bhattacharyya et al. [24] and Turkyilmazoglu [20] and
also the references therein. It should also be pointed out that the
existence of unique/multiple solutions of the “auxiliary” equations
(3.2) is a necessary reason, but not sufficient in general. Even
though, in the present analysis the proved is that the current
problem admits a unique exponential solution, it does not auto-
matically negate the existence of any other form of analytic solu-
tion. However, as aforementioned, the provided solutions are
physical since they collapse onto the well-known physical solu-
tions previously worked out by famous researchers in the field.
Moreover, in the limit of infinite material parameter → ∞K , values
in (3.3) turn out to the explicit asymptotic expressions
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It is worthy of remarking here that the existence domain of
parameter λ for any fixed values of K and s enables one to obtain
the scaled skin friction coefficient ″ ( )f 0 and the scaled couple
stress coefficient ′( )h 0 , which are both covered from the above
exact formula in the form

λ λ″( ) = − ′( ) = −f h m0 , 0 .2

We should remind that the true local skin friction parameter based
on the wall skin friction will be affected by the microrotation and
hence is given by

( + ( − ) ) ″( )m K f1 1 0 .

The local couple stress parameter is also accordingly adjusted.

3.2. Solution of the temperature field

The exact solution expressing the velocity and microrotation
fields via (3.1) and (3.3) dominates the temperature field of con-
stant wall temperature. Taking this into consideration and solving
the energy equation, the scaled temperature field θ takes the
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