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a b s t r a c t

In book II of Newton's Principia Mathematica of 1687 several applicative problems are introduced and
solved. There, we can find the formulation of the first calculus of variations problem that leads to the first
free boundary problem of history. The general calculus of variations problem is concerned with the
optimal shape design for the motion of projectiles subject to air resistance. Here, for Newton's optimal
nose cone free boundary problem, we define a non-iterative initial value method which is referred in the
literature as a transformation method. To define this method we apply invariance properties of Newton's
free boundary problem under a scaling group of point transformations. Finally, we compare our non-
iterative numerical results with those available in the literature and obtained via an iterative shooting
method. We emphasize that our non-iterative method is faster than shooting or collocation methods and
does not need any preliminary computation to test the target function as the iterative method or even
provide any initial iterate. Moreover, applying Buckingham Pi-Theorem we get the functional relation
between the unknown free boundary and the nose cone radius and height.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In book II of Newton's Principia Mathematica of 1687 several
applicative problems are introduced and solved. There, we can find
the first calculus of variations problem, predating the brachisto-
chrone problem of the 1690s, that leads to the first free boundary
problem of history. The general calculus of variations problem is
concerned with the optimal shape design for the motion of
projectiles subject to air resistance, see Edwards [11]. Fig. 1 shows
a projectile shaped like a bullet with a nose cone having radius r
and height h; here x and y are the Cartesian coordinates. This nose
cone is a surface of revolution determined by the plane curve
y¼ yðxÞ. The term “nose cone” refers to the generic shape and not
necessarily an actual “cone”. On the basis of reasonable assump-
tions on the air resistance, Newton established that the air
resistance force F acting on the projectile moving at a velocity v

is given by

F ¼ 2kρv2; ð1Þ

where ρ is the density of the air, and the fundamental parameter k,
indicated as the drag coefficient, is given by the formula

k¼
Z r

0

2πx

dy
dx

ðxÞ
� �2

þ1

dx: ð2Þ

This model is based on the assumption of gas flows as indepen-
dent movement of non-interacting mass particles, which hit the
projectile shape and change their momentum. The absence of
particle interactions is in contradiction to laminar and turbulent
flow models, which are preferred for dense fluids. Thus, the
Newton model is only useful for three occasions: motion in low
pressure gas, generating good tasks for the calculus of variation
and providing the first example of a free boundary problem.

Usually, given a specific configuration of the bullet researchers
compute the reduced drag coefficient kn ¼ k=πr2 instead of k, and
in Table 1 we report the results concerning several nose cone
shapes investigated by Newton.

It is interesting to realize that a rounded hemisphere and a
pointed cone provide the same value kn ¼ 1=2. The paraboloid,
with yð1Þ ¼ 1, yields a smaller value. For the conical frustum the
function y(x) is a straight segment forming an angle θ with the
x-axis. The optimally angled flat-tipped conical frustum offers least
air resistance when tan 2θ¼ 2. Newton's optimal nose cone is
defined by the solution of a free boundary problem, to be
discussed and solved numerically in the next sections. Newton's
flat-tipped frustum offers less air resistance than all of the simple
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shapes. There are two competing effects: the flat tip has large air
resistance but it allows the nose cone to have steeper sides, which
reduces the air resistance. For over 300 years, Newton's solution
stood as the minimizer but it is only the radially symmetric flat-
tipped minimizer. A radially symmetric nose cone with indented
tip results in a smaller value of kn, that is kn ¼ 0:29519, Newton's
optimal value, see Gallant [20].

Landau [23] was the first to point out that free boundary
problems are always non-linear. Therefore, this kind of problems is
often solved numerically. Moreover, normally free boundary pro-
blems are transformed into boundary value problems (BVPs), see
Ascher et al. [2] or [1, p. 471]. In this context, sometimes, it is
possible to solve a given free boundary problem non-iteratively,
see the survey reported by Fazio [14], whereas BVPs are usually
solved iteratively.

Here, for Newton's free boundary problem optimal nose cone,
we define a non-iterative initial value method which is referred in
the literature as a non-iterative transformation method (ITM).
Indeed, non-ITMs can be defined within Lie's group invariance
theory. As far as group invariance theory is concerned, we refer to
Bluman and Cole [5], Bluman and Kumei [6], Barenblatt [3], or
Dresner [10]. The first application of a non-ITM to a free boundary
problem was given by Fazio and Evans [16]. In the past, the main
drawback of non-ITMs was that they were considered not widely
applicable: see the critical considerations by Fox et al. [19], Meyer
[24, pp. 97–98], Na [25, p. 137] or Sachdev [27, p. 218]. In fact, the
simplest way in order to verify if a non-ITM is applicable to a
particular problem is to use an inspectional analysis as shown by
Seshadri and Na [28, pp. 157–168] (cf. also the discussion on
inspectional analysis by Birkhoff [4, pp. 99–103]). In relation to the
transformation of free boundary problems to initial value pro-
blems (IVPs), it is also possible to define an iterative extension of
the TM which is always applicable [12,13,15].

2. Newton's free boundary problem

In [11] Edwards exploits modern computer algebra tools to
explore the origin and meaning of Newton's nose cone problem. In
Fig. 2 we show the physical setup for Newton's optimal flat-tip
projectile shape.

Newton's intuition was that the optimal nose cone of least
resistance would have a flat circular tip joined to the cylindrical
body by a curvilinear band. In this particular case, the value of the
reduced drag coefficient can be computed by

kn ¼ a2þ
Z r

a

2x

dy
dx

ðxÞ
� �2

þ1

dx: ð3Þ

But, what should be the radius a of the flat tip and what should be
the shape y¼ yðxÞ of the arc generating this optimal band by
revolution around the y-axis? Nowadays, we would regard this
as a calculus of variations problem, complicated by a variable
midpoint condition, and proceed to set up the appropriate
Euler–Lagrange equation:

∂
∂y

� d
dx

∂
∂ _y

� �
Φðx; y; _yÞ ¼ 0; ð4Þ

where we have used Newton's dot notation for the first derivative
and

Φðx; y; _yÞ ¼ 2x
ð _yÞ2þ1

: ð5Þ

Therefore, we get the free BVP

d2y

dx2
¼

dy
dx

dy
dx

� �2

þ1

" #

x 3
dy
dx

� �2

�1

" # ; xA ½a; r�

yðaÞ ¼ 0;
dy
dx

ðaÞ ¼ 1; yðrÞ ¼ h; ð6Þ

where the boundary condition on the derivative at x¼a means
that the tangent to the arc y(x) at a has the same direction of y¼x,
the other two boundary conditions come from the geometrical
configuration of the projectile, and a, the length of the frustum, is
the unknown free boundary. The second order ordinary differen-
tial problem (6) is Newton's optimal free boundary problem.

Fig. 1. Physical setup for Newton's projectile shape design.

Table 1
Different nose cone shapes and the corresponding values of the reduced drug
coefficient kn computed for r ¼ h¼ 1.

Shape kn

Hemisphere 0.5000
Pointed cone 0.5000
Paraboloid 0.4024
Optimal conical frustum 0.3820
Newton's optimal nose cone 0.3748

Fig. 2. Physical setup for Newton's optimal flat-tip projectile shape.
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