Accepted Manuscript

Anchoring effect of Ni²⁺ in stabilizing reduced metallic particles for growing single-walled carbon nanotubes

Maoshuai He, Xiao Wang, Lili Zhang, Qianru Wu, Xiaojie Song, Alexander I. Chernov, Pavel V. Fedotov, Elena D. Obraztsova, Jani Sainio, Hua Jiang, Hongzhi Cui, Feng Ding, Esko Kauppinen

PII: S0008-6223(17)31215-0

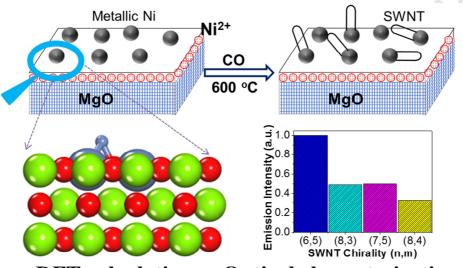
DOI: 10.1016/j.carbon.2017.11.093

Reference: CARBON 12623

To appear in: Carbon

Received Date: 8 September 2017
Revised Date: 7 November 2017
Accepted Date: 29 November 2017

Please cite this article as: M. He, X. Wang, L. Zhang, Q. Wu, X. Song, A.I. Chernov, P.V. Fedotov, E.D. Obraztsova, J. Sainio, H. Jiang, H. Cui, F. Ding, E. Kauppinen, Anchoring effect of Ni²⁺ in stabilizing reduced metallic particles for growing single-walled carbon nanotubes, *Carbon* (2017), doi: 10.1016/j.carbon.2017.11.093.


This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Graphical Abstract

A Ni-incorporated MgO catalyst was developed for predominant synthesis of (6, 5) single walled carbon nanotubes. Density functional theory-based calculations revealed that the unreduced subsurface Ni stabilized reduced Ni atoms on the surface, facilitating the growth of carbon nanotubes with a narrow chirality distribution.

DFT calculations Optical characterizations

Download English Version:

https://daneshyari.com/en/article/7848911

Download Persian Version:

https://daneshyari.com/article/7848911

Daneshyari.com