Accepted Manuscript

Electrochemical capacitive energy storage in PolyHIPE derived nitrogen enriched hierarchical porous carbon nanosheets

Ashvini B. Deshmukh, Archana C. Nalawade, Indrapal Karbhal, Mohammed Shadbar Qureshi, Manjusha V. Shelke

PII: S0008-6223(17)31194-6

DOI: 10.1016/j.carbon.2017.11.080

Reference: CARBON 12610

To appear in: Carbon

Received Date: 18 May 2017

Revised Date: 22 November 2017 Accepted Date: 25 November 2017

Please cite this article as: A.B. Deshmukh, A.C. Nalawade, I. Karbhal, M.S. Qureshi, M.V. Shelke, Electrochemical capacitive energy storage in PolyHIPE derived nitrogen enriched hierarchical porous carbon nanosheets, *Carbon* (2017), doi: 10.1016/j.carbon.2017.11.080.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Electrochemical Capacitive Energy Storage in PolyHIPE derived Nitrogen Enriched Hierarchical Porous Carbon Nanosheets

Ashvini B. Deshmukh^{1§!}, Archana C. Nalawade^{1†!}, Indrapal Karbhal^{§!}, Mohammed Shadbar Qureshi*^{†!}, Manjusha V. Shelke^{*§‡!}

Laboratory, Council of Scientific and Industrial Research (CSIR), Pune-411008, MH, India

Corresponding authors:-M, V. Shelke (<u>mv.shelke@ncl.res.in</u>), M S Qureshi (<u>ms.qureshi@ncl.res.in</u>.)

Abstract

Porous and interconnected electrodes based on carbon nanoarchitectures offer comprehensive advantages of large specific surface area and high porosity consequently increasing the specific capacitance of ultracapacitor energy storage systems. Emulsion-templated polymers, PolyHIPEs (Polymerized High Internal Phase Emulsions) are highly porous polymers with a structure of cages interconnected by windows thus provide suitable framework to create such porous carbon nanostructures. Herein, nitrogen enriched porous carbon nanosheets are synthesized by pyrolysis of polymer-silica hybrid PolyHIPE and subsequent silica removal. This nitrogen enriched porous carbon nanosheets when tested as an electrode for ultracapacitor, showed specific capacitance as high as 209 F/g at a current density of 1A/g in 1M H₂SO₄with excellent capacity retention over long cycling.

Keywords: nitrogen enriched porous carbon nanosheets, PolyHIPE template, ultracapacitor, energy storage.

[§]Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, MH, India

[‡]CSIR-Network Institute for Solar Energy, CSIR-National Chemical Laboratory, Pune-411008, MH, India

[†]Chemical Engineering and Process Development Division, National Chemical

¹ Academy of Scientific and Innovative Research (AcSIR), Chennai 600113, TN, India

¹A.D. and A.N. Contributed equally to this work

Download English Version:

https://daneshyari.com/en/article/7848935

Download Persian Version:

https://daneshyari.com/article/7848935

Daneshyari.com