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In this short paper we study the flow of a mixture of a fluid infused with particles in a channel. We use
the classical mixture theory approach whereby constitutive relations are proposed for the stress tensor of
each phase. For the interaction forces, the effect of different hindrance functions for the drag force is
studied; moreover a generalized form of the expression for the coefficients of the interactions forces, also
known as the hindrance functions, is suggested. For studying this two-component system numerically, a
three-dimensional CFD solver based on OpenFOAM® has been developed. Applying this solver, a specific
problem (blood flow) has been studied for which our numerical results and experimental data show

Published by Elsevier Ltd.

1. Introduction

From a continuum mechanics point of view, when describing the
behavior of materials such as rubber, water, metals, or polymers,
one can regard each of these as a single continuum. However, in
many instances, we encounter ideal gas mixtures, fluid mixtures,
bubbly liquids, alloys, composites, suspensions, fluidized particles,
porous media and pneumatic systems that cannot be regarded as a
single constituent continuum. It is more appropriate to assume that
the material consists of more than one constituent. Another
example of such a complex situation is a granular system which is
a collection of a large number of discrete (solid) particles with
interstices filled with a fluid, namely a liquid or a gas [24]; in
general, the term ‘granular materials’ (solid particles) refer to
particles with a size larger than 1 pm. Granular materials are unlike
solids, since they conform to the shape of the vessel containing
them, thereby exhibiting fluid-like behavior. However, they are also
unlike fluids since they can be heaped. Many problems related to
granular systems, whether occurring in nature or industry, have
been the subject of extensive study. Some examples occurring in
nature are sand dunes and snow avalanches. In many granular
systems, the interstitial fluid plays a minor role in the bulk transport
of materials and in such cases the system can be treated as a single
component rather than multi-component system. However, in
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some granular systems, such as blood flow and coal feeder in a
power plant (where the coal particles are transported to the
combustion chamber by mixing them with oil or water), the mass
of the interstitial fluid is comparable to that of the solid particles
and the interactions between the fluid and the granular materials
are significant; in such cases it is more appropriate to model the
system as a multi-component one.

The flow behavior of fluid-solid mixtures in transport lines has
been of interest in chemical processes for many years. In general,
empirical relations that predict the flow rate and pressure drop in
such processes have been developed for specific ranges of solids
and fluid properties as well as for various geometries. A traditional
way of modeling the behavior of fluids or suspensions that cannot
be modeled by the classical Newtonian fluid model is by using
non-Newtonian (or more accurately non-linear) models that are
homogeneous. The theory of multiphase mixtures presents
another avenue of research which can account for the inherent
non-homogeneities in the problem. Modeling multi-component
flows such as fluidized beds and slurries, quite often involve
formulation of constitutive relations for quantities such as partial
stress tensors and interaction forces. These constitutive relations
inevitably introduce unknown material properties such as viscos-
ities, normal stress coefficients, and thermal conductivities. These
properties, in general, need to be measured experimentally,
though in rare cases other theories, for example the statistical
theory (for example, the kinetic theory of gases) may be used to
obtain the form and dependence of these material coefficients on
other measurable quantities. Many of the studies concerning
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fluid-solid flows typically employ one of the two continuum
theories developed to describe such situations: averaging method
or mixture theory (theory of interacting continua). In the first
approach, namely the averaging method [28,29,23,20] point-wise
equations of motion, valid for a single fluid or a single particle, are
modified to account for the presence of the other components and
the interactions between components. These equations are then
averaged over time, some suitable volume which is large com-
pared with a characteristic dimension (for example, particle
spacing or the diameter of solid particles) but small compared to
the dimensions of the whole system, or an ensemble. Terms which
appear due to the process of averaging, which are not present in
the equation being averaged, are usually interpreted as some form
of interaction between the constituents. Constitutive relations to
represent these interactive forces, as well as the stress tensors for
each constituent, are required to make the theory complete. The
second method of modeling multi-component systems is mixture
theory. This theory, also known as the theory of interacting
continua, based on modern continuum mechanics, can be applied
to the above-mentioned problems. Truesdell [66] is the first to set
up the mathematical theory of mixtures in which phenomena of
diffusion, dissociation, combination, and chemical reaction in the
broadest sense can be represented. Later, Truesdell [67] studied
the mathematical theory of the diffusion of mass in a mixture
using four different approaches, namely (i) the kinematical, lead-
ing to Fick's equation of diffusion, (ii) the hydrodynamical (Max-
well-Stefan equations of motion for the constituents in a mixture
of fluids), (iii) the kinetic (Maxwell-Chapman-Enskog formulas in
a mixture of dilute monatomic gases), and (iv) the thermodynamic
approach, which is suitable for the diffusive flux in more general
fluid mixtures. Kelly [33] presented one of the first attempts at a
general theory for a reacting continuum. The mixture theory is in a
sense, a homogenization approach in which each component is
regarded as a single continuum and at each instant of time, every
point in space is considered to be occupied by a particle belonging
to each component of the mixture [68]. More detailed information,
including an account of the historical development, is available in
the review articles by Atkin and Craine [6,7], Bowen [11], and
Bedford and Drumbheller [10], and in the books by Truesdell [68],
Samohyl [57], Rajagopal and Tao [49], Hutter and Johnk [25] and
Schneider and Hutter [58].

In this paper we study the flow of a mixture of a fluid infused with
particles in a channel. We use the classical mixture theory approach
whereby constitutive relations are proposed for the stress tensor of
each phase [38,39]. For the interaction forces, the effect of different
hindrance functions for the drag force is studied; moreover a general-
ized form of the expression for the coefficients of the interactions
forces, also known as the hindrance functions, is suggested. For
studying this two-component system, a three-dimensional CFD solver
based on OpenFOAM® is developed and the flow of such a mixture is
studied in a micro-channel.

2. Governing equations

In this section, we provide a brief summary of the relevant and
important equations in mixture theory. Let X; and X denote the
position of the bodies belonging to the interstitial fluid and that of
the solid particles, in the reference configuration, i.e., prior to
mixing. The motion of the two components can be represented as
(see [11])

Xr :Xf(xfu ), X :XS(Xsat) (])

while the kinematical quantities associated with these motions are
drx, dsx

Vf = gtf’ Vs = (51’:5 (2)
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where v is the velocity field, D is the symmetric part of velocity
gradient, and d;/dt and ds/dt denote differentiation with respect
to time holding X; and X; fixed, respectively. Note that in the
above equations the indices ‘f and ‘s’ are not repeated indices;

they stand for fluid and solid components, respectively. The bulk
density field, p; and py, for these two components are

Ps = Ppso 4)

where pro and py are the pure density of interstitial fluid and solid,
in the reference configuration; ¢ is the volume fraction of solid,
where 0 < ¢ < ¢max < 1. The function ¢ is represented as a con-
tinuous function of position and time; in reality, ¢ is either one or
zero at any position and at anytime, depending upon whether one
is pointing to a solid particle or to the interstitial fluid at that
position. That is, the real volume distribution has been averaged,
in some sense, over the neighborhood of any given position. It
should be mentioned that in practice ¢ is never equal to one; its
maximum value, generally designated as the maximum packing
fraction, depends on the shape, size, method of packing, etc.

In the absence of thermo-chemical and electromagnetic effects,
the governing equations consist of the conservation of mass, linear
momentum and angular momentum. The equations of conserva-
tion of mass in the Eulerian form are (see [6,7])

pr =0 —=d)pjo,

ap, R
(th+ div(psvp) =0 (5a)
%+ div(psvs) =0 (5b)

where o/dt is the derivative with respect to time, div is the
divergence operator, while the equations of balance of the linear
momentum are written

Dv, .

pr—tf =div(Ty)+psby +f (6a)
Dv .

pSD—tS =div(Ts)+psbs —f; (6b)

where in general for any scalar g, D“B/Dt = 0B/dt +v* - VB, a=f,s,
and (for any vector w), D*w/Dt = ow/dt+(Vw)v®, Ty and Ts stand
for the Cauchy stress tensors, f; represents the interaction forces
(exchange of momentum) between the components, and by and b;
refer to the body force. Tr, Ts and f; will be given by the
constitutive equations. The balance of the angular momentum
implies that, in the absence of couple stresses, the total Cauchy
stress tensor is symmetric. Once the individual (partial) stress
tensors are derived (or proposed), a mixture stress tensor can be
defined as Tr, = T1 + T [21,22] where Ty = (1 —¢)T; and T, =T so
that the mixture stress tensor reduces to that of the fluid as ¢ —0
and to that of the solid particles as e —»0 [where e = (1 —¢)]. T, may
also be written as T2=¢ﬁ, where T; may be thought of as
representing the stress tensor in the reference configuration of
the solid particles. Eqs. (5) and (6) represent the basic governing
equations for the flow of a two-component mixture where there
are no thermal, chemical, or electromagnetic effects. Clearly in
most applications the thermal effects are important. In such cases,
a complete thermodynamical theory is necessary, and in addition
to the energy equations for the different components, one also
needs to consider the effects of the second law of thermody-
namics, i.e., the entropy inequality, often referred to as the
Clausius-Duhem inequality. This is beyond the scope of the
present study. Application of the Clausius-Duhem inequality, in
general, would impose certain constraints on the material coeffi-
cients appearing in the constitutive relations (see [69]). A very
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