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a b s t r a c t

Cubic potential and hysteresis behavior (Bouc–Wen type) of a non-linear energy sink are used to localize
the vibratory energy of a linear structure. A general methodology is presented to deal with time evo-
lutionary energy exchanges between two oscillators. Invariant manifold of the system and its stability
borders are detected at fast time scale while traced equilibrium and singular points at slow time scale let
us predict possible behaviors of the system during its pseudo-stationary regime(s). The paper is followed
by an example that considers the Dahl model for representing the hysteresis behavior of the non-linear
energy sink. All analytical developments and results are compared with those obtained by direct inte-
gration of system equations. Obtained analytical developments can be endowed for designing non-linear
energy sink devices with hysteresis behavior to localize vibratory energy of main structures for the aim of
passive control, energy harvesting and/or both of them.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Quite intensive works have been carried out to present vibratory
energy localization and passive control of main systems by non-linear
energy sink (NES) devices with essentially cubic [1,2] or non-smooth
non-linearities [3–10] for the aim of passive control, energy harvesting
and/or for re-distribution of modal energy of main systems [11].
However in most of the above-mentioned researches, the main oscil-
lator was supposed to be linear or to present smooth non-linearity with
constant mass [12] or with time-dependent mass [13]. Some
researchers consider non-smooth behavior of main structures during
energy exchange process with a NES. In detail the following coupled
systems have been analyzed: a main oscillator with piece-wise linear
and also Dahl-type behavior [14] and a coupled non-smooth NES [7,15];
the main systemwith hysteresis behavior of Bouc–Wen type [16] and a
NES with general non-linear potential function [17]; the main structure
with single or several Saint-Venant elements [18] in parallel and a NES
with cubic or general potential function [19,20]. In this paper we study
time multi-scale energy exchanges between a main oscillator with
linear behavior and another oscillator with dual non-linearities: a NES
with smooth non-linear geometrical (cubic) and non-smooth hysteresis
(Bouc–Wen) behaviors. The re-scaled form of system equations will be
transferred to the center of mass and relative displacement; after
injecting complex variables to the system and keeping first harmonics,
the system behavior around 1:1 resonance will be analyzed at different

scales of time. This multi-scale analysis will let us to predict invariant
manifold and attraction points which can explain the passive control
process of main structures or localization of their vibratory energy by
NES devices with hysteresis responses. Organization of the paper is as it
follows: mathematical representation of the system under considera-
tion is presented in Section 2; analytical treatments of the systemwhich
includes change of variables, complexification of the system and
applying truncated Galerkin's technique is discussed in Section 2.1. A
general methodology for detecting behavior of two general coupled
oscillators at different time scales is explained in Section 3; in Section 4
the same methodology is used to study time multi-scale behaviors of
the considered coupled systems of this paper. As an example of hys-
teresis behavior of the NES, a Dahl model is chosen in Section 5;
obtained results with direct numerical integrations of the system
equations are compared with those obtained by analytical develop-
ments in Section 5.2. Finally, the paper is concluded in Section 6.

2. The model

We consider the academic model of the system under consideration
which is depicted in Fig. 1: the main structure with the mass M, the
linear stiffness k1, damping c, displacement x1, that is under external
periodic force Γ sin ðΩtÞ. It is coupled to a NES with a very light mass
m¼ ϵM (0oϵ⪡1), the damping λ and displacement x2. The NES
presents both non-linear geometrical and hysteresis behaviors. Its non-
linear geometrical potential function reads FðαÞ ¼ k3α3 while its hys-
teresis behavior is supposed to be of Bouc–Wen type, f ða; k2;A;β;n; γÞ,
with the following characteristics: x3 is the internal variable of the
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hysteresis model, k2 is the initial linear stiffness, a is the ratio of the
post-yield (kp) to initial stiffness i.e. a¼ kp

k2
and A, β, n and γ are para-

meters of the Bouc–Wen model that control hysteresis behavior. Gov-
erning system equations can be summarized as it follows:

M €x1þc _x1þk1x1þak2ðx1�x2Þþð1�aÞk2ðx1�x3Þþλð _x1� _x2Þ
þk3ðx1�x2Þ3 ¼Γ sin ðΩtÞ

m €x2þλð _x2� _x1Þþak2ðx2�x1Þþð1�aÞk2ðx3�x1Þþk3ðx2�x1Þ3 ¼ 0
_x3 ¼ A _x2�βj _x2 j jx3 j n�1x3�γ _x2 jx3 j n

8>>>><
>>>>:

ð1Þ

2.1. Re-scaling and complexification of system equations and
applying Galerkin's technique

Let us shift the time t to the new domain as T ¼
ffiffiffiffiffiffiffiffiffiffiffi
k1 þk2

M

q
t ¼ θt.

The system (1) reads ðx1ðtÞ; x2ðtÞ; x3ðtÞÞ-ðy1ðTÞ; y2ðTÞ; zðTÞÞ:

€y1þϵξ _y1þ ~k1y1þaϵ ~k2ðy1�y2Þþð1�aÞϵ ~k2ðy1�zÞ
þϵ ~λð _y1� _y2Þþϵ ~k3ðy1�y2Þ3 ¼ ϵ~f 0 sin ð ~ωTÞ

€y2þ ~λð _y2� _y1Þþa ~k2ðy2�y1Þþð1�aÞ ~k2ðz�y1Þþ ~k3ðy2�y1Þ3 ¼ 0
_z ¼ A _y2�βj _y2 j j zj n�1z�γ _y2 j zj n

8>>>>><
>>>>>:

ð2Þ
where k2

k1 þk2
¼ ϵ ~k2, k1

k1 þk2
¼ oðϵ0Þþoðϵ1Þ ¼ ~k1 ¼ 1�ϵ ~k2, k3 ¼ ϵ ~k3,

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðk1 þk2Þ

p ¼ ϵξ, λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðk1 þk2Þ

p ¼ ϵ ~λ, Γffiffiffiffiffiffiffiffiffiffiffi
k1 þk2

p ¼ ϵ ~f 0 and ~ω ¼ Ω
θ
. By shifting

the system to the center of mass and relative displacement coor-
dinates as vðTÞ ¼ y1ðTÞþϵy2ðTÞ and wðTÞ ¼ y1ðTÞ�y2ðTÞ, the fol-
lowing equations can be obtained:

€vþϵξ
_vþϵ _w
1þϵ

þ ~k1
vþϵw
1þϵ

¼ ϵ ~f 0 sin ð ~ωTÞ

€wþϵξ
_vþϵ _w
1þϵ

þ ~k1
vþϵw
1þϵ

þa ~k2ð1þϵÞwþ ~λð1þϵÞ _w

þð1�aÞ ~k2ð1þϵÞ vþϵw
1þϵ

�z
� �

þð1þϵÞ ~k3w3 ¼ ϵ~f 0 sin ð ~ωTÞ

_z ¼ A
_v� _w
1þϵ

�β
_v� _w
1þϵ

����
����j zj n�1z�γ

_v� _w
1þϵ

� �
j zj n

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3Þ
The following complex variables of Manevitch [21] are applied to
the system (3):

φ1e
i ~ωT ¼ _vþ i ~ωv

φ2e
i ~ωT ¼ _wþ i ~ωw

φ3e
i ~ωT ¼ _zþ i ~ωz

8><
>: ð4Þ

We endow Galerkin's technique by keeping first harmonics of the
system and truncating higher ones [9,17]. This means that for a
general function ℸðℶ1;ℶ2;…Þ we should evaluate the following
integral:

χðℶ1;ℶ2;…Þ ¼ ~ω
2π

Z 2π= ~ω

0
ℸðℶ1;ℶ2;…Þe� i ~ωT dT ð5Þ

Let us define the following variables and functions:

φj ¼Nje
iδj ; j¼ 1;2;3 ð6Þ

s¼ ~ωTþδ3 ) ds¼ ~ω dT ð7Þ

N1eiðδ1 �δ3Þ �N2eiðδ2 �δ3Þ ¼ Pþ iQ ðP;QARÞ ð8Þ
with

P ¼N1 cos ðδ1�δ3Þ�N2 cos ðδ2�δ3Þ
Q ¼N1 sin ðδ1�δ3Þ�N2 sin ðδ2�δ3Þ ð9Þ

R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2þQ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

1þN2
2�2N1N2 cos ðδ1�δ2Þ

q
ð10Þ

ϑ¼ arctan
Q
P

� �
ð11Þ

B¼ � β
2πð1þϵÞe

iδ3 N3

~ω

� �n

ð12Þ

C ¼ � γ
1þϵ

1
π
eiδ3

N3

~ω

����
����n ð13Þ

J1 ¼
Z 2π

0
j cos ðϑþsÞj j sin ðsÞj n�1 sin ðsÞ cos ðsÞ ds ð14Þ

J2 ¼
Z 2π

0
j cos ðϑþsÞj j sin ðsÞj n�1 sin ðsÞ sin ðsÞ ds ð15Þ

J3 ¼
Z 2π

0
cos ðϑþsÞj sin ðsÞj n cos ðsÞ ds ð16Þ

J4 ¼
Z 2π

0
cos ðϑþsÞj sin ðsÞj n sin ðsÞ ds ð17Þ

The system (3) by keeping its first harmonics, i.e. considering Eqs.
(5)–(17), reads

_φ1�
~ω
2i
φ1þ

ϵξ
2ð1þϵÞ ðφ1þϵφ2Þþ

~k1

ð1þϵÞð2i ~ωÞ ðφ1þϵφ2Þ ¼ � i
2
~f 0ϵ

_φ2�
~ω
2i
φ2þ

ϵξ
2ð1þϵÞ ðφ1þϵφ2Þþ

~k1

ð1þϵÞð2i ~ωÞ ðφ1þϵφ2Þþ ~λð1þϵÞφ2

2

þ a ~k2

2i ~ω
ð1þϵÞφ2þð1�aÞ

~k2

2i ~ω
ðφ1þϵφ2Þ�ð1�aÞ

~k2

2i ~ω
ð1þϵÞφ3

� i
2
ð1þϵÞ3

~k3

4 ~ω3 jφ2 j 2φ2 ¼ � i
2
~f 0ϵ

φ3

2
¼ A
2ð1þϵÞ ðφ1�φ2ÞþBRðJ1� iJ2ÞþCRðJ3� iJ4Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð18Þ
In the next section we will use a time multi-scale method [22] and
we will analyze the system behavior around 1:1 resonance by
imposing ~ω ¼ 1þσϵ.

3. Time multiple scale behavior of the system: a general
methodology

We present a general methodology to deal with time multiple scale
behaviors of two coupled system: the main systemwhich is attached to
a NES. The summary of the method and its goals is listed here:

� fast and slow time scales i.e. τ0 ¼ T and τ1 ¼ ϵT are introduced.
� invariant of the system at fast time scale, namely τ0-invariant,

should be detected. This invariant corresponds to system
behaviors at the infinity of fast time scale.

Fig. 1. A linear main structure coupled to a NES with cubic geometrical potential
function (FðαÞ ¼ k3α3) and a Bouc–Wen type hysteresis behavior (f ðk2 ; a;A; β;n; γÞ).
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