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a b s t r a c t

A unidirectional three-mode reduced-order model (ROM) for the lateral motion of a slender and
immersed rod subjected to harmonic and axial top motion was derived from the continuum equation of
motion. Simple trigonometric functions were employed as approximations for the vibration modes and
projection functions in Galerkin's method. The non-linear character of the ROM comes from the
extensibility of the rod axis and the quadratic hydrodynamic damping. The focus of this investigation is
the principal Mathieu's instability with respect to the first vibration mode, i.e., the condition in which the
top-motion frequency is twice the structural first natural frequency. Time histories of modal amplitude,
as well as maps of post-critical steady-state vibration amplitudes were obtained and discussed. It is seen
that, within the principal parametric instability region of the first mode, the time history corresponding
to the second classic (sinusoidal) mode oscillates with dominant frequency of the first classic (sinusoidal)
mode. Another finding is that, besides the principal Mathieu's instability region, there are also other
regions of instability, but with considerably smaller amplitudes. This aspect is due to the non-linear
character of the coupled system of equations that defines the ROM.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the context of a single degree-of-freedom system, the para-
metric excitation occurs when one of the parameters of the equa-
tion of motion (such as, for example, the stiffness of the system)
depends explicitly on time. Hill's equation is basically the second-
order differential equation of motion of a linear one-degree-of-
freedom oscillator, with a time-varying stiffness. In the case in
which the stiffness varies sinusoidally with time, Hill's equation
becomes Mathieu's equation. Depending on the combination of the
average stiffness and the amplitude of its parametric excitation, the
trivial solution may be stable or unstable. Strutt's diagram depicts
the regions of stability and instability – see, for example, Leipholz
[6], Nayfeh and Mook [15], Meirovitch [14] and Xie [26].

Parametric instability is a phenomenon of interest not only to
academia but also to practical engineering. This is the case of
offshore engineering, particularly in the field of risers dynamics.
Risers are slender tubular structures that connect the floating
units to the seabed and convey oil and gas. Due to the first-and
second-order motions of the floating units. The vessel (rigid)
motion is transferred to the riser in a manner that is not detailed
in the paper, specially so because both the analytical ROM and the

small-scale model used in laboratory experiments are directly
excited at the top. Hence, it is essentially an imposed motion at the
model top. Of course, such an imposed motion affects directly the
normal force and, therefore the geometric stiffness. Hence,
Mathieu's instability may occur.

Mathieu's instability in risers and other immersed and slender
structures were addressed in several works in the last decades.
The pioneer work on the theme is reckoned to be the one by
Rainey [20], which demonstrated that the instability zones of
Strutt's diagram for the one degree-of-freedom (DOF) tension-leg
platform (TLP) model agreed with the available experimental data.
Mazzilli [7] studied a “dry model” for the TLP, namely an elastic
pendulum with two DOF. This problem, with possible non-linear
coupling between modes, is characterized by internal resonance in
addition to parametric resonance, which leads to a more compli-
cated behavior than the fundamental one DOF problem. Of course,
this scenario is not typical for TLP's. Soares [24] discussed the TLP
problem from the standpoint of a single degree-of-freedom model,
yet considering the hydrodynamic damping embedded into a
linear damping coefficient. Patel and Park [16] investigated
Mathieu's instability in the TLP tethers and pointed out that in the
unstable region of Strutt's diagram the amplitudes would be lim-
ited due to the hydrodynamic damping. The same problem was
also investigated by Simos and Pesce [23] considering the varia-
tion of tension along the tether and they pointed out the impor-
tance of this variation in the parametric instability of tethers.
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Numerical non-linear analysis presented in Zeng et al. [29] showed
that if the surge motion of the floating units is larger, the para-
metric excitation of the risers can be severely affected by this
horizontal motion.

It is important to highlight that the mentioned papers consider
only the case in which the parametric excitation is due to a har-
monic and monochromatic excitation. Yang et al. [28] and Yang and
Xiao [27] investigated the problem of multi-frequency parametric
excitation of a TTR (top-tension riser) and showed that such a pro-
blem may be significantly different from the monochromatic para-
metric excitation. Yang and Xiao [27] investigated the multi-
frequency parametric excitation of TTRs together with the vortex-
induced vibration phenomenon. The experimental investigation
presented in Franzini et al. [3] focused on the problem of an
immersed and slender beam subjected to parametric excitation.
Among other results, the authors analyzed Strutt's diagram for some
modes, discussing the existence of modal Mathieu's instability.

Analogous to other problems in structural engineering, higher-
order models such as those based on the Finite Element Method
(FEM) might be used in the analysis of parametric instability (see,
for example, [19] and [1]). However, investigations employing
higher-order non-linear models can demand larger computational
effort. In this way, reduced-order models (ROMs) can offer a qua-
litative insight of the response with a marked decrease in the
number of degrees-of-freedom. Moreover, ROMs are a very useful
way to detect complex dynamic phenomena that might otherwise
be impossible to investigate in a higher-order model. It is important
to highlight that ROMs and FEM must be used as complementary
tools aiming at a deeper investigation of the structural dynamics.

The use of ROMs in the dynamic analysis of slender beams
subjected to typical riser loading is exemplified in Mazzilli and
Poncet [12], who derived a non-linear reduced-order model for
the analysis of vortex-induced vibrations of a vertical riser and
obtained a good qualitative adherence with FEM results.

A non-linear modal analysis of a slender beam subjected to a
linear variation of the axial load (such as in a riser) was carried out
by Mazzilli et al. [11]. Analogously to Senjanović et al. [22], the
authors embedded the effects of the bending stiffness into a fic-
titious normal force and found non-linear “Bessel-like” modes.
Current use of the “Bessel-like” modes in the analysis of para-
metric excitation of vertical risers can be found in Mazzilli et al.
[13] and Mazzilli and Dias [10].

Herein, we still focus on the problem of a vertical, slender and
immersed rod, subjected to parametric excitation due to prescribed
harmonic axial top-motions, yet taking into account ROMs with

three degrees of freedom, instead of just one, as most of the sur-
veyed studies. Notice that this problem has a counterpart in riser
dynamics. The main objective now is to investigate the principal
Mathieu's instability region for the first vibration mode, i.e., the
condition in which the top-motion frequency is twice the first
natural frequency. In Section 2, the three-mode non-linear ROM
was derived using sinusoidal functions as “modes” and as projec-
tion functions within Galerkin's method. In Section 3, the different
results obtained will be analyzed, including a post-critical ampli-
tude map. Finally, Section 4 will present the concluding remarks.

2. Three-mode reduced-order model

In order to obtain the system of ordinary differential equations
that represents the ROM, it is necessary to firstly obtain the
equation of the lateral motion (in one direction) for the continuum
vertical rod, with distributed normal force (weight minus buoy-
ancy force) γ. As the focus of this paper is not the complete deri-
vation of the equation of motion, only the major issues will be
addressed. The papers Mazzilli [9], Mazzilli et al. [8] and Mazzilli
and Poncet [12] present more detail of the derivation of the
equation of motion.

Fig. 1(a) sketches the vertical rod and the system of coordi-
nates. Consider that ml, EI, EA and L0 represent the linear mass, the
bending stiffness, the axial stiffness and the unstretched length of
the rod, respectively. In the static problem, the tension T(z) for the
continuum can be written as function of the tension at the top (Tt)
or at the bottom (Tb) through TðzÞ ¼ Tt�γL0þγz¼ Tbþγz.

The sketch of the displacement of the cross-section of a rod is
presented in Fig. 1(b). Assuming a Bernoulli–Euler beam model
and small rotations, the displacement of a generic point P of the
cross-section is given by

wP ¼w�x sin ϕ�w�x
∂u
∂z

ð1Þ

uP ¼ uþxð cos ϕ�1Þ � u ð2Þ

where w and u refer to the axial and lateral displacement of the
center of gravity of the cross-section, respectively. The strain at
this point is given by

ϵP ¼
∂w
∂z

�x
∂2u
∂z2

þ1
2

∂u
∂z

� �2

¼ ϵ�x
∂2u
∂z2

ð3Þ

Fig. 1. Schematic representations of the flexible rod: (a) Sketch of the vertical rod and (b) Bernoulli–Euler beam model. ϕ is the angle between the beam axis in the original
and deformed configurations.
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