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a b s t r a c t

A harmonic wavelets based approximate analytical technique for determining the response evolutionary
power spectrum of linear and non-linear (time-variant) oscillators endowed with fractional derivative
elements is developed. Specifically, time- and frequency-dependent harmonic wavelets based frequency
response functions are defined based on the localization properties of harmonic wavelets. This leads to a
closed form harmonic wavelets based excitation-response relationship which can be viewed as a natural
generalization of the celebrated Wiener–Khinchin spectral relationship of the linear stationary random
vibration theory to account for fully non-stationary in time and frequency stochastic processes. Further,
relying on the orthogonality properties of harmonic wavelets an extension via statistical linearization of
the excitation-response relationship for the case of non-linear systems is developed. This involves the
novel concept of determining optimal equivalent linear elements which are both time- and frequency-
dependent. Several linear and non-linear oscillators with fractional derivative elements are studied as
numerical examples. Comparisons with pertinent Monte Carlo simulations demonstrate the reliability of
the technique.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering structural systems are often subject to extreme
events and excitations such as seismic motions, winds, hurricanes,
ocean waves, blasts and impact loads which inherently possess the
attribute of evolution in time. Further, most of these excitations
exhibit not only time-varying intensities, but also time-varying
frequency contents. Thus, it can be readily seen that there is a need
for developing joint time–frequency analysis techniques for cap-
turing accurately the system/structure behavior (e.g. [1–3]). Fur-
thermore, in the field of stochastic structural dynamics (e.g. [4])
the concept of power spectrum is indispensable for characterizing
and quantifying uncertainties prevalent in complex engineering
systems. These uncertainties are mainly associated with excita-
tions, and with structural dynamic responses. Clearly, there is a
need to translate the aforementioned uncertainties into engi-
neering load models and to develop response determination

techniques, so that structural systems are efficiently designed,
monitored, and maintained.

In this regard, research efforts have focused in recent years on
utilizing wavelets for evolutionary power spectrum (EPS) estima-
tion based on available process realizations (e.g. [5–7]). Never-
theless, note that unless a rigorous mathematical model exists for
representing non-stationary stochastic processes via wavelets,
questions are raised concerning any kind of wavelet-based time-
dependent spectral analysis (e.g. see [8] for a related discussion).
In this regard, Spanos and Kougioumtzoglou [9] developed a har-
monic wavelets based statistical linearization technique for
determining the non-linear system response EPS based on a rig-
orous wavelet-based representation of non-stationary stochastic
processes [10]. Further, Kougioumtzoglou [11] developed an
approximate analytical technique for determining the non-linear
system response EPS based on the aforementioned theoretical
framework of locally stationary processes and on the orthogonality
properties of harmonic wavelets. This technique can be viewed as
an extension and generalization of a widely used spectral rela-
tionship in stationary non-linear random vibration theory (see
[12] and references therein) to account for non-stationary pro-
cesses of arbitrary EPS.
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Furthermore, since the pioneering work by Gemant [13] and
Bosworth [14], who first proposed fractional derivatives modeling
for the constitutive behavior of viscoelastic media (see also [48–
50] for some additional early contributions), fractional calculus has
been successfully applied in diverse fields of physics and engi-
neering such as viscoelasticity and rheology, control theory as well
as biophysics and bioengineering (e.g. see [15] for a broad per-
spective). In particular, applications of fractional derivatives in
structural engineering for vibration control or seismic isolation
purposes include modeling of the restoring force of structural
systems equipped with viscoelastic dampers (e.g. [16–19]). In this
regard, theoretical developments have been found in very good
agreement with experimental results (e.g. [20]).

Focusing on the stochastic response determination of linear
and non-linear oscillators endowed with fractional derivative
elements several both time and frequency domain numerical and
approximate analytical techniques have been developed (e.g. [21–
29]). Note that although frequency domain approaches are more
efficient computationally than time domain simulation schemes,
they are restricted to the stationary case only. Further, to the best
of the authors' knowledge limited results, if any, exist in the
context of a stochastic joint time–frequency response analysis of
structural systems endowed with fractional derivative elements.

In this regard, in this paper a harmonic wavelets based
approximate analytical technique is developed for determining the
response EPS of linear and non-linear (time-variant) structural
systems endowed with fractional derivative elements. Specifically,
based on the localization properties of harmonic wavelets a fre-
quency- and time-bands dependent excitation-response relation-
ship is derived which can be viewed as a generalization of the
celebrated Wiener–Khinchin spectral relationship of the linear
stationary random vibration theory. In this manner, a joint time–
frequency response analysis is achieved. Further, relying on the
concept of defining both time- and frequency-dependent optimal
equivalent linear elements, the aforementioned input–output
relationship is extended via statistical linearization to account for
non-linear systems. Overall, the technique can be construed as a
generalization of the concepts/results obtained by Spanos and
Kougioumtzoglou [9] and Kougioumtzoglou and Spanos [30] to
account for systems with fractional derivative elements.

2. Mathematical formulation

2.1. Harmonic wavelets elements

In this section the basic properties of generalized harmonic
wavelets (GHWs) are reviewed. In this regard, the family of GHWs (e.g.
[31]) utilizes two parameters m;nð Þ for the definition of the band-
width at each scale. The main advantage of this family relates to the
decoupling of the time–frequency resolution achieved at each scale
from the value of the central frequency; this is not the case with other
commonly used wavelet bases such as the Morlet and other families.

Further, GHWs have a box-shaped frequency spectrum,
whereas a wavelet of m;nð Þ scale and kð Þ position in time attains a
representation in the frequency domain of the form

Ψ G
m;nð Þ;k ωð Þ ¼
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where m, n and k are considered to be positive integers and

Δω¼ 2π
T0

; ð2Þ

where T0 is the total time duration of the signal under con-
sideration. A collection of harmonic wavelets of the form of Eq. (1)

spanning adjacent non-overlapping intervals at different scales
along the frequency axis is shown schematically in Fig. 1. The
inverse Fourier transform of Eq. (1) gives the time-domain
representation of the wavelet which is equal to
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In Fig. 2, an example of the generalized harmonic wavelet
(GHW) of Eq. (3) with parameters values m¼ 5;n¼ 10; k¼ 2;Δω
¼ 1:7241 rad=s; T0 ¼ 18:9s is plotted. Further, the continuous
generalized harmonic wavelet transform (GHWT) is defined as

WG
m;nð Þ;k f tð Þ� �¼ n�m
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and projects f ðtÞ on this wavelet basis; the bar over a symbol
represents complex conjugation. Furthermore, perfect recon-
struction of the original signal f ðtÞ can be achieved according to
the equation
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X
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X
k
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where f ðtÞ is assumed to be a zero-mean signal.
It is noted that Eq. (5) represents a GHWs based representation

of deterministic functions. It can be readily understood that a
mathematically rigorous wavelets based representation of sto-
chastic processes is required to perform any kind of joint time–
frequency analysis in a stochastic sense; see also [8] for a relevant

Fig. 1. A generalized harmonic wavelets basis example spanning non-overlapping
intervals of arbitrary bandwidths in the frequency domain.

Fig. 2. Real and imaginary parts of a generalized harmonic wavelet (GHW) in the
time domain with parameters values m¼ 5;n¼ 10; k¼ 2;Δω¼ 1:7241 rad=s;
T0 ¼ 18:9s.
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