
A first parallel programming approach in basins
of attraction computation

P. Belardinelli n, S. Lenci
DICEA, Polytechnic University of Marche, 60131 Ancona, Italy

a r t i c l e i n f o

Article history:
Received 12 August 2014
Received in revised form
25 October 2015
Accepted 25 October 2015
Available online 30 November 2015

Keywords:
Parallel programming
Computing performance
Duffing's equation
Basins of attraction
Attractors
MPI

a b s t r a c t

The paper focuses on the development of a numerical code for the computation of basins of attraction by
using the parallel programming. Two different approaches based on the massage passing interface (MPI)
standard are presented; the performance analysis presented encourages us to use a massive commu-
nication between nodes only for a few-cores architecture. The critical issues arising from the study of a
generic dynamical system are discussed while the computation of basins is performed on a benchmark
system described by Duffing's equation. We paid attention at the optimization of the computing time as
well as the work time load on each node in order to develop a performing and portable code. For the
presented codes, both the scalability with an implementation on a professional cluster and the cap-
abilities of the parallelism in the elaborations of basins with a large set of initial conditions have been
tested.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction and motivations

The analysis of non-linear systems of differential equations is a
common task for scientists and engineers of many disciplines, often
with the aim to look more carefully at complicated phenomena in
their own fields [1]. In particular the study of dynamic attractors and
of their basins of attraction represents a key point to get an overall
description of the problem and to predict the behavior in several
conditions [2–4].

Due to the large computational costs, several attempts have been
done to improve the elaboration techniques for building basins of
attraction. The full processing of all trajectories by means of numerical
integrations is a widely applied algorithm; beside, other routines have
been developed to reduce the computational effort. Numerous mod-
ifications of the cell-to-cell mapping method introduced by Hsu [5,6]
have been proposed in order to reduce the computational time.
Recently, Eason and Dick [7] have proposed a parallelized version of
the multi-degrees-of-freedom cell mapping able to exploit the parallel
threads in multicore modern computers. An application of this
method has been tested for a dynamical integrity analysis in a coupled
linear oscillator and non-linear absorber system [8].

Here we undertake the computation of basins of attraction, by
addressing first the computation itself, looking to develop an

efficient algorithm to perform the whole calculation of the tra-
jectories. The powerful tool we want to use, by taking a conscious
look at the applicability and at the performances, is the parallel
programming in the framework of the high performance com-
puting (HPC). The parallel writing of a code represents a big deal
and it means often to rewrite completely existing software. A
motivation to change the software constructs is, especially in large
scale problems, represented by the evolution of the calculators'
architecture. From the early 1970s, an ever increasing performance
improvement of computers happened, beside to the computer
graphics and with an easier access to these resources. The
empirical law that summarize the hardware trend (directly cor-
related to the number of transistors in microprocessors) was ela-
borated in 1965 by Moore [9]. Recently, due to both technological
and economic limits, the trend cannot be respected any more, thus
the core frequency and performance will not grow following
Moore's law any longer. The roadmap of chip manufactures is now
to reinterpret Moore's law and to increase the number of cores in
order to maintain the architectures evolution. Up to now, in order
to speed-up an elaboration of a written software, newest powerful
processors could be used avoiding any modification on the code
[10]. Today the hardware evolution imposes a different approach
and the programming itself becomes the key to get better per-
formances [11]. The parallel programming is strictly correlated to
the hardware, an indicative example is represented by the copies
of processes generated in the message passing; furthermore, in
order to take advantage of the newer machines, multiple threads

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nlm

International Journal of Non-Linear Mechanics

http://dx.doi.org/10.1016/j.ijnonlinmec.2015.10.016
0020-7462/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: p.belardinelli@univpm.it (P. Belardinelli),

lenci@univpm.it (S. Lenci).

International Journal of Non-Linear Mechanics 80 (2016) 76–81

www.sciencedirect.com/science/journal/00207462
www.elsevier.com/locate/nlm
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.10.016
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.10.016
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.10.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2015.10.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2015.10.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2015.10.016&domain=pdf
mailto:p.belardinelli@univpm.it
mailto:lenci@univpm.it
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.10.016

and the use of accelerators and GPU should be implemented. In
this work the aim is to exploit the MPI programming interface [12]
to develop a parallel code for the computation of basins of
attraction. We present two schemes of implementation based on a
real-time synchronization between the computing nodes or with a
posteriori processing.

As a benchmark of our codes we chose the Duffing equation
since it can describe many non-linear systems, and it can provide
an approximate description of many others [13–15]. It is also an
easy benchmark with large amount of results; for example, a study
of this equation focused on the basins of attraction and dynamical
integrity can be found in [16].

The paper is organized as follows: in Section 2, after an over-
view on dynamical systems, we discuss the method to apply the
parallel programming to the basins computation. The results car-
ried out on the benchmark model are shown in Section 3, while
we state our conclusions in Section 4 that round up the paper.

2. Proposed approaches

2.1. Dynamical systems

In the following we briefly introduce some definitions and
concepts in order to clearly present the discussion. We consider a
non-autonomous initial value problem (henceforth IVP) given by:

_y ¼ fðt; yÞ
yðt0Þ ¼ y0

(
ð1Þ

This is a system of ordinary differential equations in time t with
f : Ψ �R� Rn-Rn, where n is the spatial dimension of the pro-
blem and dot stands for the time derivative. The equation must
satisfy the (1)2 that represents the initial condition ðt0; y0Þ in the
domain of f. It is also convenient to introduce the evolution
function (or flux) of the dynamical system

Φ : ½t0; tmax� �Ψ-Rn; ð2Þ
being tmax the maximal time for which the IVP exists. The flux Φ
ð�; t0; y0Þ defines a solution curve (or trajectory, or orbit) [17], and it
is a solution for the Cauchy problem (1):

_Φ ¼ fðt;Φðt; t0; y0ÞÞ
Φðt0; t0; y0Þ ¼ y0

(
: ð3Þ

The flux allows us to define the attracting set: A, a closed subset of
Rn, is an attracting set if (a neighborhood V of A such that 8yA
V) Φðt; t0; yÞAV and \Φðt; t0; yÞ ¼ A, 8 tZt0. The domain of
attraction (basin of attraction) of an attracting set A is defined as
the ⋃tr0Φðt; t0; yÞÞ, 8yAV [18]. The operative way to perform the
computation of a basin of attraction is to evolve, forward in time
and starting from a specific time t0, the set of all the initial con-
ditions, by looking for their attracting sets.

To permit a practical implementation, we have to discretize,
both in time and in space, the continuous problem: this dis-
cretization will determine the number of the elaborations to be
performed. The initial conditions become a set of cells of fixed size
and the density of the cells determines the resolution of the
approximated problem. It has to be noted that for a generic non-
periodic system, the number of the elaborations to be performed is
determined by the spatial dimension of the initial conditions. It is
more complex to estimate the sequence if a cell mapping method
is preferred.

We have to take care of the competition between the precision
(that requires a large partition sets) and the computational cost, in
terms of both time and resources. By reducing the cell size, the
error in the membership on a wrong basin can be reduced.

The discretization process introduces implicitly errors since all
the points belonging to a specific cell are assimilated to a unique
initial condition and consequently the result of its time integration
will be only one. But issues arise from the practical implementa-
tion process; e.g. we have to deal with the uncertain if all the
points within the cell can belong at the same basins. Generally the
boundaries and the fractal parts are largely affected by the domain
discretization whereas compact internal part of a basin are less
influenced.

Also the evolution in time, performed with a time integration,
requires a steps subdivision. The timing path from the starting t0
up to the attractor can require numerous steps especially for
chaotic attractor [19].

A very dense domain helps to obtain better results, but can
overcharge the available resources, this is especially the case for
large dimension systems.

As consequence of that, the problem is addressed toward the
parallel computing.

2.2. Code architecture

The calculation of a basin is not a well-posed parallelizable process
since the attractors belong to the system and must be shared among
several computations; however, since the dynamic system must be
analyzed numerous times, the aim is to execute in parallel more
elaborations we can. The concept in which we have organized the
code is sketched in Fig. 1. The mere computation is done by the
computing tasks, a master process denominated master of the initial
conditions distributes the work and collects the results, finally, another
master, namely the master of the attractors, picks up the information
about the attractors and acts as coherence operations. Ideally, by
computing all the initial states at same time, it is possible to collect
simultaneously all the needed information. A pure parallelization is
unfortunately unfeasible, i.e. the software must make the most with
the available hardware capabilities, by exploiting all its characteristics.
The aim is to avoid long queues of tasks by establishing a concurrency
of processes. The computational tasks must be managed in a specific
way since several factors lead to a different time in each computation,
e.g. the discovery of a new attractor, the match with an old attractor, a
diverging orbit, and so on, thus one further issue is the balancing of
work. We have also to keep in mind that the MPI implementation
generates a spread of processes well defined in the code initialization
but there are some others numerous unknown processes defined by
the operating system that can be scheduled within the running of our
software and that can delay or modify the operation order.

The master of the initial conditions (from here called P0) plays
the role of a scheduler rules probing the status of the nodes and
distributing the initial conditions to elaborate. However the first
dispatch of works does not require a status query since the slave
processes are free. The P0 acts preliminary a discretization of the
range of initial conditions to be elaborated, knowing both the
system and the grid dimensions.

Each available worker, in its free state, is waiting instructions from
the master while at the end of a computation declares its status and
communicates the result. If all the initial conditions have been sent to
the workers, further requests of work are killed in order to permit the
message passing finalization. Since the memory of each process is
private, and the performance of a remote memory access defined in
the standard MPI-2 requires too many barriers and large windows of
reading, we have to exchange information trying to optimize the time.
In view of the above, the communication is based on non-blocking
send (MPI_Isend) and blocking receive (MPI_Recv), including a test
function on the slaves prior to reuse variables under update [20]. We
look for to scale the software up to a large numbers of cores, thus we
have decided not to use any broadcasting and gathering collec-
tive functions in order to avoid implicit barriers and hardware

P. Belardinelli, S. Lenci / International Journal of Non-Linear Mechanics 80 (2016) 76–81 77

Download English Version:

https://daneshyari.com/en/article/784906

Download Persian Version:

https://daneshyari.com/article/784906

Daneshyari.com

https://daneshyari.com/en/article/784906
https://daneshyari.com/article/784906
https://daneshyari.com

