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ABSTRACT

The interaction between cars or trains and bridges has been often described by means of a simplified
model consisting of a beam loaded by a traveling mass, or by a traveling oscillator.

Among others, two aspects are essential when dealing with masses traveling along flexible vibrating
supports: (i) a complete relative kinematics; and (ii) a continuous transition between a traveling mass,
rigidly coupled, and a traveling oscillator, elastically coupled with the support.

The kinematics is governed by normal and tangential components—with respect to the curved
trajectory—of the acceleration. However in literature these parts are oriented with reference to the
undeformed beam configuration. This model is improved here by a non-linear second-order enriched
contribution.

The transition between a traveling oscillator and a traveling mass is governed by the stiffness k of the
elastic or viscoelastic coupling which, in the latter case (i.e. rigid coupling), has to tend towards infinity.

However, very large stiffness values cause high frequencies and significant problems are mentioned
in the literature in order to establish numerically stable and reliable results and in order to realize a
continuous evolution between absolute and relative formulations.

By using mixed state variables, generalized displacements and coupling forces, the contribution from
the stiffness changes from k to its inverse 1/k, the coupling force itself becomes a member of the
solution-space and the problems, which have been mentioned in the literature, disappear. As a matter of
fact, the coupling force can also take into account a viscoelastic contribution; moreover, a larger number
of traveling oscillators can be considered, too.

Finally, for a periodic sequence of moving oscillators the dynamic stability is treated in the time-
domain along several periods, as well as in the spectral domain, by using Floquet's theorem.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In order to avoid dynamic instability, the use of piezoelectric
actuators can be effective: some applications to beams and plates

The body of literature devoted to traveling oscillators is large.
State-of-the-art overviews are available from Ouyang [1] and Au
et al. [2]. The classical treatment concentrates on finding the
critical constant velocity which leads to a continuous increase of
deformations if a sequence of masses crosses the beam/bridge.

Well-known studies on this dynamic stability problem have
been presented by Bolotin [3], Fryba [4], Luongo [5-8] and
Piccardo and his coworkers [9-14].
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are shown in [15-18].

A group of recently published papers presents a discussion
whether absolute or relative formulations should be used [19]; deals
with the equivalence of the moving mass and moving oscillator
problems [20,21]; and gives attention to the dynamic stability if a
sequence of oscillators crosses the supporting structure, which has
been already deformed by the foregoing oscillators [22].

Another group of papers [23,24] deals with more sophisticated
models for both, bridge and vehicles, which are represented as an
assembly of rigid bodies, springs and dampers. Sometimes, in
addition, the bridge is modeled as a continuous in-plane curved
beam or the wheel-rail interaction is of special concern: see, for
instance [25-30].

Plates and beams on generalized foundations subjected to
moving loads are treated in several papers like [31-33] including
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tensionless foundations and special models for finite and infinite
soil domains using Boundary Elements, Infinite elements or the
Scaled Boundary Finite Element Method.

The analysis and control of bridges with traveling masses has
been studied, too, during earthquakes: several papers are listed in
the above-mentioned review [1].

Finally, local and global changes of the supporting structure
due to abrupt changes in the bridge-railway interface or due to
separation and impact-reattachment have been treated in [34-36].

The first aspect of this paper concerns the introduction of
mixed state variables, generalized displacements and coupling
forces, for the description of the traveling oscillator. In doing so,
a continuous transition between a traveling mass and a traveling
oscillator can be established without incurring numerical pro-
blems due to high frequencies caused by stiffness coefficients
tending towards infinity. The key idea behind this new approach is
to change from the stiffness k to its inverse 1/k; in doing so, the
coupling force automatically appears as an additional member of
the solution-space.

However, to prepare a common basis for the description of the
deformations and the total acceleration of the oscillator, Section 2
describes in a detailed way the model of a circle-like beam in a
horizontal plane. Thus, the straight beam case is rigorously
recovered when the curvature radius R tends toward infinity;
practically, it is included in the presented model when this radius
is significantly increased.

In Section 3 the kinematic model of the traveling mass is
presented and discussed. Section 4 is devoted to the second
innovative aspect of this paper: a consistent representation of
the normal and tangential acceleration with respect to the curved
trajectory of the traveling mass or oscillator. These accelerations
are part of the second total derivative d*x/dt? of the position
vector X of the traveling coupling point: up to now, the classical
formulation shows that the normal acceleration is applied along
the vertical direction (which is a first-order approximation), and
not along the normal to the supporting curve, which is bent by
strains, and constitutes the actual trajectory traveled by the
coupling point. Here, a non-linear second-order theory for the
description of the position vector is introduced, which results in a
normal acceleration correctly oriented along the normal vector of
the deformed beam axis. For the sake of simplicity, the procedure
is applied here only in the case of an initially straight beam.

In order to restrict the amount of variables and to concentrate
on the benefits from the mixed formulation, the shear deforma-
tions due to shear-forces are neglected, and the system of partial
differential equations in space and time is solved in Section 5 by
means of a semi-analytical approach using the sinusoidal modal
space of the curved beam. Thus, the beam is assumed to be a
simply supported one with zero vertical displacements and
torsional rotations at both boundaries.

The resulting time-variant ordinary differential equations are
presented in Section 6 and then solved in Section 7 by means of a
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Fig. 1. Circle-like beam lying in a horizontal plane.

linear interpolation of all relevant quantities. The evaluation of
Floquet's theorem is prepared in Section 8, while in Section 9,
some typical results are presented and discussed. Finally, in
Section 10, some conclusions are drawn.

2. Formulation of the curved beam model

The curved beam/bridge is assumed to have a circle-like shape
in the horizontal plane, spanned by the (fixed) Cartesian unit
vectors eq, e,, and perpendicular to the vertical unit vector es.

2.1. Basic definitions

The coordinates and displacements of the beam points are
defined locally by the following variables, clearly depicted
in Figs. 1 and 2:

® R: radius, referred to the curved beam axis, i.e. to the cross-
section centroid, G.

® 1 radial position of a point, P, measured from the center of
curvature O.

® (: angular position of a point, measured from the center of
curvature O.

® s—=Rg: coordinate in circumferential direction along the
curved beam axis.

® £: coordinate in the cross-section of the beam measured in
radial direction from the centroid, G; the corresponding radial
position ris: r=R+£.

® z: coordinate in the cross-section of the beam measured in
vertical direction from the centroid.

® yu: displacement in radial direction, defined by the local axis K;.

® y: displacement in tangential direction, defined by the local
axis k.

® w: displacement in vertical direction, defined by local/global
vertical axis Kks.

® (,: rotation around the local radial axis kj.

® (,: rotation around the local tangential axis k.

® ¢-: rotation around the local/global vertical axis ks = es.

2.2. Kinematics and strains

Using the cylindrical coordinates r, ¢, z, for any point of the
beam the position vector x can be described with respect to the
fixed initial Cartesian base E = {e;, e,, e3}:

X=T1 COS @ e;+7 sin @ e;+ze;3 @)

Adopting the comma notation for derivatives, (i.e. X, = dx/ar, etc.),
the total differential, dx of this position vector:

dx=x,dr+x, dp+x,dz 2)

Fig. 2. Cross-section and local coordinates of the circle-like beam. O denotes the
center of the beam axis, G the centroid and P a generic point of the cross-section.
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