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a b s t r a c t

An analysis is made of the effect of vertical throughflow on the onset of thermal convection in a horizontal

layer of an electrically conducting fluid contained between two rigid permeable plates and heated from

below in the presence of a uniform vertical magnetic field. The constant throughflow is measured by Peclet

number Q and at both boundaries heat flux is held constant. It is found that when both boundaries are

perfectly electrically conducting, the critical value of Rayleigh number Rc
t at the onset of steady convection

increases with increase in Q for given values of the magnetic parameter Rh, the Prandtl number p1 and the

magnetic Prandtl number p2 with p14p2. It is observed that the magnetic field inhibits the onset of steady

convection. The analysis further reveals that Rc
t is independent of the sign of Q. When the lower plate is

electrically non-conducting and the upper plate is perfectly electrically conducting, Rc
t is greater than the

corresponding value of Rc
t for perfectly conducting plates for given values of Q, Rh, p1 and p2. It is also found

that the positive throughflow (Q 40) is more stabilizing than the negative one (Q o0Þ. The results are

exemplified by considering some realistic cases e.g., liquid sodium and gallium.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that when a horizontal layer of viscous fluid is
heated uniformly from below in a gravitational field, the basic
state becomes unstable and steady convection sets in when the
Rayleigh number R exceeds a certain critical value Rc. Determina-
tion of this criterion for the onset of convection is a classical
problem associated with Rayleigh and Bénard. A comprehensive
account of thermal instability is given in Chandrasekhar’s mono-
graph [1]. In this problem there is no flow of fluid across the
horizontal boundaries. Shvartsblat [2,3] investigated a modified
problem, where the boundaries are permeable, and there is a
vertical constant throughflow caused by injection at one bound-
ary and sucking out fluid at the other. Additional references on
the works of Shvartsblat may be found in the book by Gershuni
and Zhukhovitsky [4]. The problem is of interest because it gives
rise to the possibility of controlling the thermal instability by
adjustment of vertical throughflow as well as for its relevance to
meteorology. In an effort to explore the relationship of cellular
cloud patterns to large-scale subsidence or ascent, Krishnamurthy
[5] and Somerville and Gal-Chen [6] discussed the effects of small
amounts of throughflow on onset of convection.

Convective instability in a saturated porous medium with through-
flow was investigated by Sutton [7], Homsy and Sherwood [8],

Jones and Persichetti [9], Nield [10], Khalili and Shivakumara
[11], and Shivakumara and Khalili [12]. It is found that in some
situation, a small amount of throughflow is destabilizing. While
studying the effect of vertical throughflow on the onset of
convection in a layer of viscous incompressible fluid between
permeable horizontal boundaries heated uniformly from below,
Nield [13] found that the effect of throughflow is not invariably
stabilizing and depends on the nature of the boundaries specified.

Thermal instability in a horizontal layer of an electrically
conducting fluid heated from below and permeated by a uniform
vertical magnetic field was investigated by Thompson [14] and
Chandrasekhar [15] and experimentally by Nakagawa [16]. It is
found that the magnetic field tends to inhibit the onset of thermal
convection in the fluid layer and during convection the cells are
elongated in the direction of the magnetic lines of force.

The aim of this paper is to study the effects of throughflow on
the onset of thermal convection in a horizontal layer of an
electrically conducting fluid heated from below in the presence
of a uniform vertical magnetic field. The motivation for studying
this problem is to explore the possibility of controlling magneto-
hydrodynamic thermal instability by throughflow.

2. Linear stability analysis

We consider a horizontal layer of an incompressible viscous
electrically conducting fluid contained between two rigid perme-
able plates in the presence of a uniform vertical magnetic field H0.
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The layer is heated from below and a constant throughflow of
magnitude W0 is superimposed parallel to the gravity vector. We
suppose that the layer is confined by boundaries at z¼0 and z¼d

and at both the boundaries, the heat flux is held constant (see
Fig. 1).

The basic equations of magnetohydrodynamics (MHD) in the
unsteady state are (cf. Chandrasekhar [1])
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where r, q, H, p, g, me and n denote the fluid density, velocity
vector, magnetic field vector, pressure, acceleration due to grav-
ity, magnetic permeability and the kinematic viscosity of the
fluid, respectively. Further Z stands for the magnetic diffusivity of
the fluid given by 1=4pmese, where se is the electrical conductiv-
ity of the fluid which is assumed constant.

The equation of energy is
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where T is the temperature in the fluid, and k and cv denote the
thermal diffusivity and the specific heat at constant volume of the
fluid, respectively. The last term in (5) stands for the Joule heating
due to flow of electric current in the fluid and f denotes the
viscous dissipation given by

f¼ 2meijeij: ð6Þ

Here m is the dynamic coefficient of viscosity of the fluid and eij

is the rate-of-strain tensor given by (in Cartesian tensor notation)
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ui being the components of velocity q.
The equation of state for the fluid is

r¼ r0½1�aðT�T0Þ�, ð8Þ

where a is the coefficient of volume expansion and T0 is the
temperature at which r¼ r0. In the unperturbed state, the steady
basic temperature distribution Teq(z) is determined from (5) as

the solution of
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This leads to the basic temperature gradient dTeq=dz as
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where DT is the imposed temperature difference between the two
boundaries. If P stands for the sum of the fluid pressure p and the
magnetic pressure me9H92

=8p, then in the unperturbed state,
Eq. (1) gives the equilibrium pressure Pe as the solution of

�
dPe
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�reqg ¼ 0: ð11Þ

Further from (8)

req ¼ r0½1�aðTeq�T0Þ�: ð12Þ

The velocity and the magnetic field in the unperturbed state have
components ð0;0,W0Þ and ð0;0,H0Þ, respectively.

Let the initial state described by Eqs. (10)–(12) be slightly
perturbed. The perturbed state is assumed as

q¼ ðu,v,W0þwÞ, P¼ PeþP0, ð13Þ

T ¼ TeqðzÞþy, H¼ ðhx,hy,H0þhzÞ, ð14Þ

where the perturbation quantities u, v, w, P0, y, hx, hy and hz are
functions of x, y, z and t. Substituting (13) and (14) in the
momentum equation (1) and using (11) and (12), we get upon
ignoring terms of the second and higher orders in the perturba-
tions, the following linearized equations:
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In writing the above equations, we have made use of the well
known Boussinesq approximation of taking density variation in
accounting for the buoyancy force only, the inertial effects of
density variation being neglected. The corresponding forms of
continuity equation (2) and the solenoidal relation (3) for the
magnetic field are
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In addition to the foregoing equations, the linearized forms of the
magnetic induction equation (4) and the energy equation (5) are
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Fig. 1. A sketch of the physical problem.
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