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a b s t r a c t

The lateral buckling and helical buckling problem of a circular cylinder constrained by an inclined

circular cylinder under a compressive force, torsion, and its own weight is complicated and difficult to

obtain an exact analytical solution. Thus, the non-linear differential equation is solved incrementally

using the discrete singular convolution (DSC) algorithm together with the Newton–Raphson method.

Detailed formulations are worked out. A simple way to numerically simulate the helical buckling is

proposed and solution procedures are given. Four examples with various inclined angles, weights per

unit length of the inner cylinder, axial applied loads, and boundary conditions are investigated. To

verify the formulations and solution procedures, comparisons are firstly made with data obtained using

the finite element method. It is verified that under certain circumstance, only lateral or helical buckling

alone will occur. On some other circumstance, both lateral buckling and helical buckling may occur and

the critical helical buckling loads are higher than the critical lateral buckling loads if frictions are not

considered. Some conclusions are made based on the results presented herein.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The buckling behavior of a circular cylinder constrained in a
circular cylinder subjected to axial compression, torsion, and
gravitational loads is of interest to engineering practice, for
example, to the oil industry [1–4]. Buckling may initiate in a
lateral mode that snakes along the lower surface of the constrain-
ing cylinder. With the increase of axial compressive force, the
inner cylinder may achieve an overall helically buckled state in
which the buckled cylinder forms a helix spiraling around the
inner surface of the constraining cylinder. The progression on this
subject is clear from past research, but this has been scattered
over many papers. Recently, Wicks et al. [5] gave an excellent
review on the development of this subject.

Due to the outer cylinder constraint and gravitational loads, as
well as the effect of the boundary conditions, the buckling
behavior of short cylinders is even more complicated and difficult
to obtain an exact analytical solution. It is also seen that how the
initiating lateral mode transitions to the helical mode, especially
for the short cylinders, still unclear, since little experimental data
exist on constrained cylinder buckling [4,5]. Therefore, approx-
imate and numerical methods, such as the Rayleigh–Ritz techni-
que, the Galerkin method, the finite element method (FEM), and

the differential quadrature element method (DQEM), are the
appropriate approaches to obtain solution to the complicated
problem. Huang and Pattillo [3] used the Rayleigh–Ritz technique
the helical buckling of a tube in an inclined wellbore. Mitchell [1]
used the Galerkin method to study the effects of well deviation on
the helical buckling behavior. Power’s method together with the
method of the steepest decent was used to solve the non-linear
algebraic equations. Based on the numerical results, stability
criteria were developed for lateral and helical buckling. Liu and
Wang [6] developed a special 2-node-4-dof beam element and
studied the non-linear buckling behavior of tubing in deviated
wells by FEM. The Newton–Raphson method with small distur-
bances was used to solve the non-linear algebraic equations.
Munteanu and Barraco [7] developed a special 3-node-3-dof
beam element and investigated the non-linear buckling behavior
of a pipe in horizontal pipe by employing the FEM. Gravitational
load was neglected for simplicity and the Newton–Raphson
method was used to solve the non-linear algebraic equations.
The helical buckling configurations were clearly shown. Gan et al.
[8] employed the differential quadrature element method com-
bined with the incremental iterative method to study the buck-
ling behavior of tubular in deviated wells. It is observed [6,8] that
the tubular would lose contact with the well-wall to transit from
the lateral buckling mode to the helical buckling mode.

It is seen that if the gravitational load is considered, the
corresponding load can be only obtained approximately using
numerical integration if the local methods are used [1,6]. On the
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other hand, in the global method, such as the differential quad-
rature method, difficulties may arise in modeling long tubes with
large number of grid points and in modeling the discontinuity of
the slope existing in the helical buckling. Thus the differential
quadrature element method has to be used [8] to overcome these
difficulties. The discrete singular convolution (DSC) algorithm,
proposed by Wei [9], possesses both the accuracy of global
methods and the flexibility of local methods. The DSC algorithm
has been successfully used in applications of many mechanical
problems [10] and similar solution accuracy as to DQM is
observed [11]. The method has been successfully used in solving
the challenge problems of vibration analysis of plates with
irregular internal supports and mixed boundary conditions
[12–15], vibrating at higher-order modes [16], free vibration,
and stability analysis of arbitrary straight-sided quadrilateral
plates, such as skew, trapezoidal, and rhombic plates [17,18].
More recently, the non-linear static analysis of plates was
analyzed using the DSC algorithm [19–21]. Therefore, the DSC
algorithm may be an excellent alternative to solve the compli-
cated buckling problem of constrained cylinders.

The objective of the present work is to investigate the non-
linear buckling behavior of a circular cylinder constrained in a
rigid circular cylinder subjected to axial compression and gravita-
tional loads using the DSC algorithm. A simple way to initiate the
lateral and helical buckling modes is proposed to study how the
initiating lateral and helical modes. Detailed formulations and
solution procedures are given. The non-regularized Lagrange’s
delta sequence kernel (DSC-LK) [11,13] is used. Four examples
with various inclined angles, weights per unit length of the inner
cylinder, axial applied loads and boundary conditions are inves-
tigated. To verify the formulations and solution procedures,
comparisons are firstly made with data obtained using the finite
element method. It is verified that under certain conditions, only
lateral or helical buckling alone will occur [1]. On some other
conditions, both lateral buckling and helical buckling may occur
and the critical helical buckling loads are higher than the critical
lateral buckling loads if frictions are not considered. Some con-
clusions are drawn based on the results presented herein.

2. Basic equations

Consider a circular cylinder constrained by an inclined rigid
circular cylinder, shown in Fig. 1. The material of the inner
cylinder is isotropic. The length, weight per unit length, and
bending rigidity of the inner cylinder are L, EI, and q, respectively.
The inner cylinder is subjected to a compressive force P at its
upper end and a resulting compressive force Fb at its lower end. r

is the radial clearance between inner and outer cylinders, a is the
inclined angle, Wn is the contact force per unit length, and y is the
deviation angle in the xy plane. The inner cylinder contacts
initially with the outer cylinder shown in Fig. 1. For convenience,
the origin of a right-handed Cartesian coordinate system is at the
upper end, x and y axes are in the cross-section plane, and z axis
coincides with the axis of outer cylinder. Frictions between the
inner and outer cylinders are not considered.

Compared to the length of the inner cylinder, r is usually very
small, thus small displacement is assumed. The deformed shape
of the inner cylinder can be conveniently described by the Euler–
Rodrigues quaternion l, defined by [7,22]:
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where j is the magnitude of the rotation vector jn, nx,ny,nz are
the direction cosines of the unit vector n.

In terms of the Euler–Rodrigues quaternion, the curvature can
be expressed by [7,22]
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where s is the curvilinear coordinate along the deformed axis of
the inner cylinder.

To calculate the displacement components from (jx,jy,jz),
the rotation matrix is needed. Fig. 2 shows an original straight
cylinder deformed into a curved one. A typical point T on the
initial configuration has been turned to t on the current config-
uration, and Gi and gi are the reference coordinates at point T and
t. The unit vector G3 (g3) is along the tangent direction and G1, G2

(g1, g2) are perpendicular to G3 (g3). According to the Euler–
Rodrigues quaternion, the rotation matrix between gi and Gi can
be expressed as [7,22]
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Fig. 1. Schematic diagram of a tube sitting in an inclined rigid cylinder.
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Fig. 2. Sketch of the reference coordinate systems.
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