Accepted Manuscript

Hollow microcapsules by stitching together of graphene oxide nanosheets with a difunctional small molecule

Qinmo Luo, Peiran Wei, Emily Pentzer

PII: S0008-6223(16)30378-5

DOI: 10.1016/j.carbon.2016.05.024

Reference: CARBON 10988

To appear in: Carbon

Received Date: 22 February 2016

Revised Date: 21 April 2016 Accepted Date: 7 May 2016

Please cite this article as: Q. Luo, P. Wei, E. Pentzer, Hollow microcapsules by stitching together of graphene oxide nanosheets with a di-functional small molecule, *Carbon* (2016), doi: 10.1016/j.carbon.2016.05.024.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Hollow microcapsules by stitching together of graphene oxide nanosheets with a di-

functional small molecule

Qinmo Luo, [‡] Peiran Wei, [‡] and Emily Pentzer *

Case Western Reserve University, Department of Chemistry, 10900 Euclid Ave, Cleveland, OH

44106

Electronic Supplementary Information (ESI) available. DOI:

[‡] These authors contributed equally to this work.

Abstract

Micron-sized hollow capsules composed of graphene oxide and small molecule cross-linker are

prepared and isolated. These capsules are thoroughly characterized using various spectroscopic

and microscopic techniques. The cross-linked and non-cross-linked microcapsules show distinct

release profiles from each other. Moreover, the microcapsules can be loaded with gold

nanoparticles, suggesting these structures are useful in encapsulation technologies.

1. Introduction

Graphene oxides (GO) has attracted much interest for its antimicrobial properties,[1–4]

mechanical strength,[5],[6] gas barrier properties,[7-10] and as a precursor to conductive

materials.[11–14] GO is a sheet-like plane of sp² and sp³ hybridized carbon atoms with oxygen

functionalities throughout (i.e., alcohols, epoxides, and carboxylic acids). Due to the coexistence

of the hydrophobic carbon frame and hydrophilic oxygen functional groups, GO is amphiphilic

and can serve as a surfactant to stabilize Pickering-type emulsions. Such interfacial assembly of

GO platelets has been used to prepare polymer particles "armored" with GO nanosheets, [15], [16]

* Corresponding author: Tel: 216-368-3697; E-mail: ebp24@case.edu (Emily Pentzer)

Download English Version:

https://daneshyari.com/en/article/7849351

Download Persian Version:

https://daneshyari.com/article/7849351

<u>Daneshyari.com</u>