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a b s t r a c t

Second-order dynamical systems are of paramount importance as they arise in mechanics and many
applications. It is essential to have workable explicit criteria in terms of the coefficients of the equations
to effect reduction and solutions for such types of equations. One important aspect is linearization by
invertible point transformations which enables one to reduce a non-linear system to a linear system. The
solution of the linear system allows one to solve the non-linear system by use of the inverse of the point
transformation. It was proved that the n-dimensional system of second-order ordinary differential
equations obtained by projecting down the system of geodesics of a flat (nþ1)-dimensional space can be
converted to linear form by a point transformation. This is a generalization of the Lie linearization criteria
for a scalar second-order equation. In this case it is of the maximally symmetric class for a system and the
linearizing transformation as well as the solution can be directly written down. This was explicitly used
for two-dimensional dynamical systems. The criteria were written down in terms of the coefficients and
the linearizing transformation allowed for the general solution of the original system. Here the work is
extended to a three-dimensional dynamical system and we find explicit criteria, including the linear-
ization test given in terms of the coefficients of the cubic in the first derivatives of the system and the
construction of the transformations, that result in linearization. Applications to equations of classical
mechanics and relativity are given to illustrate our results.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Lie symmetry analysis can be used to find reductions and exact
solutions of linear and non-linear (systems of) differential equa-
tions (DEs) that are invariant under a sufficient number of point
transformations, i.e., transformations of the independent and
dependent variables [1] that leave invariant the DEs. However, the
procedures although algorithmic can be quite cumbersome. The
problem reduces enormously if the transformations can convert
the DEs to simpler form. The simplest form is the linear form. For
higher-order DEs it may be useful to utilize generalized or other
higher transformations which are more general than point trans-
formations. For a scalar second-order ODE, Lie [2] showed that the
necessary and sufficient conditions for linearization by point

transformation are that the ODE be at most cubic in the first
derivative and that its coefficients satisfy an over-determined
system of four conditions involving their partial derivatives
along with those of two auxiliary functions. Lie obtained, by
invertible change of variables, both practical (in terms of the
coefficients) and algebraic criteria for a scalar second-order ODE to
be reducible to the simple free particle equation. Tressé [3] derived
two invariants of the equivalence group of point transformations
for a scalar second-order ODE and proved that their vanishing
provides the necessary and sufficient conditions for its lineariza-
tion to the free particle equation. These conditions have been
proved to be equivalent to the Lie linearization conditions [4].
They were derived in [5] by the use of geometric arguments and
for the Cartan equivalence method in [6]. Important applications
of symmetries and reductions to ODEs are to Emden-type and
reduced non-Newtonian equations. Such types of ODEs have
received much attention [7–9]. Another interesting area is that of
symmetries of first integrals of second-order ODEs. It has been
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shown that if a first integral of a scalar second-order ODE has three
symmetries then it is linearizable by point transformation [10].
Algebraic linearization criteria via an invertible change of variables
for a dynamical system of second-order ODEs have been obtained
in [11,12] and the complete symmetry classification of a linear
system of two second-order ODEs was investigated in [13,14].
Recently, Bagderina [15] found linearization criteria for a dyna-
mical system of two second-order ODEs. A review of linearization
of ODEs by various methods and some generalizations is given in
[16]. Since every system of ODEs can be transformed to a (larger)
system of first order ODEs by introducing new variables corre-
sponding to the derivatives of the higher order equation, it might
have been expected that the linearization problem reduces to one
of analyzing first order linearization, as has been done for control
problems, for example in [17]. By setting the control to zero one
would obtain the system of first order ODEs. In fact, it is well-
known that the use of Lie point symmetries can convert every
system of first order ODEs to linear form [1]. However, there is no
canonical procedure for determining the Lie symmetries of first
order systems and one loses the power of Lie symmetry analysis
for this case [2]. Further, the Lie symmetries (and hence all
methods using them) do not carry through under the conversion
to first-order systems. As such, the linearizability of first-order
ODEs says nothing about that of higher-order ODEs. That is why
Lie needed to develop his analysis in the first place. As has been
shown [18] with the 2-dimensional systems that are maximally
symmetric, one gets to use the power of geometry to effectively
just write down the solution of the system using algebraic
computing.

The set of symmetries of the system of geodesic equations
properly contains the set of isometries of the underlying manifold
[20,21]. This leads naturally to linearization criteria for a dyna-
mical system of second-order ODEs that have the same form as
geodesic equations [18]. Following the projection procedure of
Aminova and Aminov [22] and by utilization of the above con-
nection, linearization criteria for a system of cubically semi-linear
second-order ODEs to the simplest free particle system have been
provided in [23]. In that work 2-dimensional systems were
investigated in some detail. By projecting the geodesic equations
in 2-dimensional to a scalar ODE, the Lie linearization conditions
were automatically derived. Using it projecting 3-dimensional
systems of geodesic equations, one could directly write down
the linearizing transformations and the solution for the most
symmetric class of linearizable 2-dimensional systems. While the
method was stated in full generality, its implementation in three
dimensions needed to be explicitly studied. This is performed in
this paper. Thus we investigate the linearizability of a system of
three second-order cubically semi-linear equations to say the free
particle system. We derive the linearization criteria to the simplest
system in terms of the coefficients of the equations. We also show
how one can construct the linearizing point transformation in a
systematic manner. Moreover, we show that they can be used for
the reduction of the linear system of three equations to the sim-
plest free particle equations.

The plan of the paper is as follows. A brief review of the
mathematical notation is given in the next section. Next practical
criteria in terms of the coefficients for linearization of three
cubically semi-linear second-order equations to the simplest sys-
tem are given. We also show how the point transformations can be
constructed. This transformation hen allows one to recover the
solution of the original system. Hereinwe state the relevant results
for a linear system as well. To illustrate our results we present
applications, to classical mechanics and relativity, in the sub-
sequent section. A brief summary and conclusion are given in the
last section.

2. Mathematical notation

For completeness, it is crucial to first present some geometrical
notation (see, e.g. [20,22]). The Christoffel symbols, in terms of the
metric tensor gij, are given as

Γi
jk ¼ 1

2 g
imðgjm;kþgkm;j�gjk;mÞ; ð1Þ

where gim is the inverse metric tensor, i.e., gimgjm ¼ δij. These
Christoffel symbols have n2ðnþ1Þ=2 coefficients and are sym-
metric in the lower two indices. The system of geodesic equations
is

€xiþΓi
jk _x

j _xk ¼ 0; i; j; k¼ 1;…;n; ð2Þ

where the dot denotes the total differentiation with respect to the
parameter s. The Riemann curvature tensor is

Ri
jkl ¼Γi

jl;k�Γi
jk;lþΓi

mkΓ
m
jl �Γi

mlΓ
m
jk ; ð3Þ

which is skew-symmetric in the lower last two indices and satis-
fies

Ri
jklþRi

kljþRi
ljk ¼ 0: ð4Þ

A necessary and sufficient condition for a system of n quadratically
non-linear second-order ODEs of the form (2) to be linearizable by
point transformation is that the Riemann tensor vanishes, i.e.,

Ri
jkl ¼ 0: ð5Þ

Following Aminova and Aminov [22], we project the system of
geodesic equations (2) down by one dimension and write the
system of second order ODEs as

xa″þAbcx
a0xb

0
xc

0 þBa
bcx

b0xc
0 þCa

bx
b0 þDa ¼ 0; a¼ 2;…;n; ð6Þ

where the prime now represents differentiation with respect to
the parameter x1 and the coefficients in terms of the Γa

bc are

Abc ¼ �Γ1
bc; Ba

bc ¼Γa
bc�2δacð Γ

1
bÞ1; Ca

b ¼ 2Γa
1b�δabΓ

1
11;

Da ¼Γa
11; a; b; c¼ 2;…;n; ð7Þ

in which we have used the notation T ðabÞ ¼ ðTabþTbaÞ=2.

3. Linearization conditions for cubically semi-linear equations

We are motivated by the success in obtaining the Lie conditions
for a scalar second-order cubically semi-linear ODE and the deri-
vation of the practical criteria for linearizing a system of two
second-order semi-linear ODEs derived in [23]. We pursue similar
conditions for linearization of a system of three second-order
ODEs. Consequently, we study (6) when n¼3 for linearization via
point transformations by resorting to a system of four geodesic
equations (2). Here we consider practical linearization criteria for
reduction to the simplest system in terms of the coefficients for a
system of three cubically semi-linear second-order ODEs of the
form (6), n¼3.

For n¼4, Eqs. (6) and (7) are written as

x2″þA22ðx2
0 Þ3þ2A23ðx2

0 Þ2x30 þ2A24ðx2Þ02x4
0 þA33x2

0 ðx30 Þ2

þ2A34x2
0
x3

0
x4

0 þA44x2
0 ðx40 Þ2þB2

22ðx2
0 Þ2þ2B2

23x
20
x3

0 þ2B2
24x

20
x4

0

þB2
33ðx3

0 Þ2þ2B2
34x

30x4
0 þB2

44ðx4
0 Þ2þC2

2x
20 þC2

3x
30 þC2

4x
40 þD2 ¼ 0;

x3″þA22ðx2
0 Þ2x30 þ2A23x2

0 ðx30 Þ2þ2A24x2
0
x3

0
x4

0 þA33ðx3
0 Þ3

þ2A34ðx3
0 Þ2x40 þA44x3

0 ðx40 Þ2þB3
22ðx2

0 Þ2þ2B3
23x

20
x3

0 þ2B3
24x

20
x4

0

þB3
33ðx3

0 Þ2þ2B3
34x

30x4
0 þB3

44ðx4
0 Þ2þC3

2x
20 þC3

3x
30 þC3

4x
40 þD3 ¼ 0;

x4″þA22ðx2
0 Þ2x40 þ2A23x2

0
x3

0
x4

0 þ2A24x2
0 ðx40 Þ2þA33ðx3

0 Þ2x40

þ2A34x3
0 ðx40 Þ2þA44ðx4

0 Þ3þB4
22ðx2

0 Þ2þ2B4
23x

20x3
0 þ2B4

24x
20
x4

0
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