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a b s t r a c t

We propose a wavelet method in the present study to analyze the large deflection bending and post-
buckling problems of rods composed of non-linearly elastic materials, which are governed by a class of
strong non-linear differential equations. This wavelet method is established based on a modified wavelet
approximation of an interval bounded L2-function, which provides a new method for the large deflection
bending and post-buckling problems of engineering structures. As an example, in this study, we con-
sidered the rod structures of non-linear materials that obey the Ludwick and the modified Ludwick
constitutive laws. The numerical results for both large deflection bending and post-buckling problems
are presented, illustrating the convergence and accuracy of the wavelet method. For the former, the
wavelet solutions are more accurate than the finite element method and the shooting method embedded
with the Euler method. For the latter, both bifurcation and limit loads can be easily and directly obtained
by solving the extended systems. On the other hand, for the shooting method embedded with Runge–
Kutta method, to obtain these values usually needs to choose a good starting value and repeat trial
solutions many times, which can be a tough task.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Lightweight structures such as rods, plates, and shells can
usually undergo a large deflection within the range of small strains.
If such structural elements comprise some type of materials that
obey non-linearly elastic constitutive laws, both geometrical non-
linearity and material non-linearity must be considered in the
analysis of the mechanical behavior of these elements, which is a
basic characterization of many engineering systems, such as flocked
fabrics, robotic arms, bridge and engine mountings, and structural
damps [1,2]. Many polymeric fiber and metallic fiber materials
exhibit a non-linear constitutive relationship [2]. Experiments have
also shown that cantilever beams made of a common type of
stainless steel exhibit highly non-linear stress–strain curves [3].
Structural elements made of such materials have attracted the
attention of many researchers since the 1970s, such as Antman and
Rosenfeld have provided an analytical analysis of global buckling of
rods with non-linear constitutive laws [4]. Although the work of
Antman and Rosenfeld have not provided any results of the specific
material laws and respective physical behavior of structures, their
work demonstrates the significance of material non-linearity in

buckling problems [5]. Bars are found to have the tendency to
buckle well before reaching the bifurcation buckling load when a
specific material non-linearity is considered in buckling analysis
[6–9]. The critical force that induces the buckling of rods is called
the limit load. Beams made of non-linearly elastic materials also
exhibit quite a rich non-linear bending behavior [1,10].

The governing equation of these non-linearly elastic rods can
usually be reduced to a quasi-linear differential equation (DE),
which reflects the non-linearity of the constitutive equations. A
quasi-linear DE is non-linear in (at least) one of the lower deri-
vatives but is linear in the highest order derivative of an unknown
function [11], which is a class of strong non-linear DEs. In the
present study, we consider the non-linear Ludwick constitutive
law, and the modified variation of this law in the bending and
buckling analysis of rods. For bending problems of rods with the
Ludwick constitutive law, an analytical solution in the form of a
definite integral [12] and a semi-analytical solution in terms of the
tangent of a bending angle [13] have been provided. However, the
analytical solution ceases to exist when the bending angle reaches
a critical value, and the semi-analytical solution is difficult to
determine except for a few cases. An approximate formula to
determine the limit load has been obtained for buckling analysis,
but the application range of this formula is minimal [14]. There-
fore, developing numerical methods for these problems is essen-
tial to investigate their rich non-linear behaviors. The governing
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equation, which is a second order non-linear DE with two-point
boundary conditions, is usually solved through the shooting
method. The basic idea of the shooting method in solving
boundary value problems is to rewrite the boundary value pro-
blems into initial value problems by adding an extra boundary
condition at the start point. The initial value problems can then be
solved through various kinds of numerical integration methods,
such as the Runge–Kutta method [2,10,14–16] and the Euler
method [17]. However, the shooting method requires repeating
trials in practical computation to determine an appropriate value
for the extra boundary condition that satisfies the boundary con-
ditions at another point. Moreover, care must be taken in choosing
a good starting value not only for singular point itself but also for
its corresponding eignfunction when solving the buckling pro-
blems via shooting method [18]. In the present study, we propose
a wavelet-based Galerkin method for solving this type of non-
linear differential equation.

Wavelets are a newly developed powerful mathematical tool,
which shows the potential in numerical analysis. Wavelets provide
another way to decompose/construct a function space compared
with the conventional Fourier theory [19]. Based on wavelet the-
ory, we have developed several efficient numerical methods for
various problems [20–24]. Very few efficient wavelet methods
have been developed for the buckling problems of light weight
structures. A wavelet collocation method is applied for the buck-
ling analysis of laminated plates [25] and a wavelet finite element
method (FEM) is employed for plates based on Reissner–Mindlin
theory [26]. However, these analyzes are limited to linear pro-
blems without considering geometrical non-linearity and material
non-linearity. Based on a simple and accurate wavelet approx-
imation expansion for any interval bounded square integrable
function [27], we propose a wavelet Galerkin method for bending
and buckling problems of rods with non-linear constitutive laws.
The governing equation of these problems is then discretizing into
a set of non-linear algebraic equations. The Jacobian matrix of
these non-linear algebraic equations is singular when load reaches
the limit point or bifurcation point. Here, we adopt the extended
system method to determine the limit and bifurcation loads. In
contrast to the commonly used incremental method, the extended
system method does not require tracing post-buckling paths, and
these singular points can be obtained directly [28,29]. The
numerical results of both bending and buckling problems are
presented in this paper, which demonstrate the convergence and
accuracy of the wavelet Galerkin method.

2. Wavelet Galerkin method

The governing equation for the large deflection bending and
post-buckling problems of a wide class of non-linearly elastic rods
can be given by [6–8,10]:

d2θ
ds2

¼Nðs;θ; κÞ ð1Þ

where θ(s) and κ(s)¼dθ/ds are the bending angle and curvature of
the rod, N is a non-linear operator, respectively. Boundary condi-
tions are at the ends of a rod assumed to be Dirichlet or Neumann
conditions.

Eq. (1) is a strong non-linear differential equation when the rod
is under large deflection both in bending and buckling problems.
The wavelet Galerkin method for solving this type of equations is
established based on a modified wavelet approximation of an
interval bounded L2-function.

2.1. A brief introduction to wavelet

According to the multiresolution analysis of wavelet theory
[30], the function space L2(R) can be divided to a sequence of
nested subspaces {0}⋯� V0� V1�⋯� Vj� Vjþ1�⋯� L2(R). A
set of orthogonal basis of subspace Vj can be formed by

ϕj;kðxÞ ¼ 2
j
2ϕð2jx�kÞ; kAZ ð2Þ

and a function f ðxÞAL2ðRÞcan be approximated through projecting
this function from L2(R) to Vj as

f ðxÞ � Pjf ðxÞ ¼
X
k

cj;kϕj;kðxÞ ð3Þ

where ϕðxÞis the orthogonal scaling function, and
cj;k ¼

R1
�1 f ðxÞϕj;kðxÞdx. Scaling function with compact support can

be constructed by using low pass filter coefficients pk with a finite
number in terms of the relation below

ϕðxÞ ¼
X
k

pkϕð2x�kÞ ð4Þ

in which subscript k¼0,1,2,…,3N�1 for Coiflet-type wavelet, N�1
is the number of vanishing moment of the corresponding wavelet
function [31]. Such a scaling function has the unique property of
shifted vanishing momentsZ 1

�1
ðt�M1ÞkϕðtÞdt ¼ 0;1rkoN ð5Þ

where M1 ¼
R1
�1 xϕðxÞdx. Based on this unique property, one has

cj;k � 2� j=2f ðkþM1

2j Þ, so that approximation of the function can be

Table 1
Coefficients pk.

k pk k pk k pk

0 –2.392638657280051E–03 6 6.459945432939942E–01 12 1.238869565706006E�02
1 –4.932601854180402E–03 7 1.116266213257999Eþ00 13 �1.583178039255944E�02
2 2.714039971139949E–02 8 5.381890557079980E–01 14 �2.717178600539990E�03
3 3.064755594619984E–02 9 –9.961543386239989E–02 15 2.886948664020020E�03
4 –1.393102370707997E–01 10 –7.992313943479994E–02 16 6.304993947079994E�04
5 –8.060653071779983E–02 11 5.149146293240031E–02 17 �3.058339735960013E�04

Fig. 1. Configuration of the rod subjected to a combined load.
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