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1. Introduction

The study of poroacoustics, the phenomenon in which an
acoustic propagation in a viscous fluid is obtained within a porous
medium [1], has been of great interest to numerous fields of sci-
ence and industry, namely oil exploration, medical ultrasound
testing, acoustic insulation, and the food industry. Straughan [2]
provides more details on these and other examples.

It is generally understood that Darcy's Law governs por-
oacoustic propagation [3]:

vp= — (‘%)v ¢))

where P is the intrinsic pressure, y is the dynamic viscosity, y is
the porosity, K is the permeability, and V is the intrinsic velocity.
This expression models the behavior of the acoustic potential
when considering the fluid-pore interactions alone. However,
Payne et al. [4] argue that if a boundary or interface is present, or if
the porosity is near unity, i.e. the fluid-pore interaction is not the
dominating factor, then Brinkman's equation should be used [3]:

VP = fiy V2V — (’%) V. )

Here, fi is the Brinkman or effective viscosity. This expression not
only accounts for the fluid-pore interaction found in the Darcy
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expression, it also models the fluid-fluid interactions. In this work
we will use a finite-difference scheme to investigate the time
evolution of an acoustic wave within a finite boundary.

2. Mathematical formulation and problem statement

As in [5], we obtain the basic governing equation for a weakly
non-linear model based on (2). Assuming 1D flow, conservation of
mass, conservation of momentum, and the quadratic approxima-
tion to the isentropic equation of state [6] take the form:

0+ (ou), =0, 3)
o(Ur +Ully) = — Px+fLyUxx — (’l%) u, 4)
P =Pe+0cCols+(f—1s’], (5)

where @ is the mass density and u is the velocity. Here and hen-
ceforth, we will use the notation #;:=dr/di, where 7 is a general
variable. Note that the subscript e denotes the (constant) equili-
brium state, c is the adiabatic speed of sound, /3 is the coefficient of
non-linearity, and s = (¢—¢,)/¢. is the condensation.

From these equations, eliminating P from (4) using (5) we get

O(Ur +utly) = — @ C2[S+(f— 1)s% ]+ fiy Uy — ("%)u (6)
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We now introduce the following dimensionless quantities,
noting that u=¢,, where ¢p=¢ (x,t) is the velocity potential:

¢o_(/) u X

=Vr u :V’ X =T
.t . P—Pe
e=T Pty %)

Here, V and L are the characteristic speed and length, both positive,
respectively. Also, by introducing the Mach number ¢=V/c,, and
after further manipulation as well as using the binomial expansion
approximation, dropping all terms of order O(e?), we obtain [1]

22+ 2 (Re) ™ Py — 5, = €0l(B— 1)p; + 5 ®)
where 02 = 9y, — dy is the 1D d'Alembertian operator, Re = c.Lo./u
is a Reynolds number, § oc y is the dimensionless Darcy coeffi-
cient, and we have dropped the diamond superscripts on the
dimensionless quantities. As in [7], we will now use the Lighthill-
Westervelt approximation:

¢x ~ = d)t’ (9)

on the right hand side of (8). We next differentiate both sides of (8)
with respect to t, and use the approximation:

P~ 7¢n (10)

which follows from (the dimensionless) Bernoulli's equation. This
substitution, along with the following boundary and initial con-
ditions, gives us the initial boundary-value problem (IBVP):

0P+ y(Re) ' Pix — 6Py = — 26[(P)* +P(Py)], (11a)
P(x,0) = sin (7x), P:x,0)=0for O<x<1), (11b)
P0,t)=0, P(1,t)=0 for (t > 0). (11¢)

3. Numerical analysis
3.1. Finite difference scheme construction

With the IBVP having been stated, we will now make use of a
finite difference scheme to find a numerical solution, meaning (11)
must be discretized. The first step is to select the integers I > 2 and
J = 2. Next, we set Ax=T/I and At =T/J, where Ax and At denote
uniform spatial and temporal step sizes, and T is the value of ¢ for
which the solution is sought. This gives the mesh points x;=i(Ax),
foralli=0,1,...,], and t;=i(At), for all j=0,1,....J.

With this done, we will discretize (11a). We will start by
replacing the second order derivatives with centered difference
quotients, and first order derivatives with a backwards-Euler
quotient. With these replacements, we obtain the difference
equation,

Pl =2PLpl, P —2pr]
Ax2 a At
x [P 2P Pl )~ (P —2P ' +P ) 5 pl_pl-
Re Ax2At At
PP\ (B opp
= —2¢f < Ar ) +P{< AL ) , (12)

where H ~ P(xt;). Solving for the most advanced time step P;“,
we obtain, after some manipulation, the explicit scheme:

p+1_ At)( Pll P{ ZPI +2P’+P¢+: P{-H
' Ax2(2¢fPl 1)

+Ar2<—_ﬁ" +2P P{“>+At5<7pi +P]1>
Ax2(2efP— 1) 2epP 1

(Pi —26P,+2ep(P)* + PP — (P~ )2)>

13
2epP -1 a3

The last step involves discretizing the initial and boundary
conditions (11b) and (11c). For details on this straightforward
process see [8]. The resulting conditions are as follows:

P? = sin (zx)), (14a)
oP) =0 (14b)
P, =0, (14c0)
Pi—0 (14d)

3.2. Numerical results

Fig. 1 is a plot of the pressure, P, as a function of position, vs
time. It was plotted with high Darcy coefficient and very high
Reynolds number, of the order of 20,000. We have assumed a
Mach number of 0.01 and a value of the non-linearity coefficient
[ =3.625. This corresponds to seawater at 20 °C and 3.5% salinity
[9]. These values would diminish the Brinkman term enough to
force the system to correspond to the Darcy-Jordan Model (DJM)
[1]. We see that the system does indeed evolve like a damped
oscillator.

Fig. 2 shows the corresponding amplitude of the pressure as a
function of position at various time snapshots.

1.0

Fig. 2. P vs x for e=0.01, §=0.5, y=0.9, p=3.625, and Re=20,000 at varying times.
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