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a b s t r a c t

Through numerical analyses, we study the roles of Brinkman viscosity, the Darcy coefficient, and the
coefficient of non-linearity on the evolution of finite amplitude harmonic waves. An investigation of
acoustic blow-ups is conducted, showing that an increase in the magnitude of the non-linear term gives
rise to blow-ups, while an increase in the strength of the Darcy and/or Brinkman terms mitigate them.
Finally, an analytical study via a regular perturbation expansion is given to support the numerical results.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The study of poroacoustics, the phenomenon in which an
acoustic propagation in a viscous fluid is obtained within a porous
medium [1], has been of great interest to numerous fields of sci-
ence and industry, namely oil exploration, medical ultrasound
testing, acoustic insulation, and the food industry. Straughan [2]
provides more details on these and other examples.

It is generally understood that Darcy's Law governs por-
oacoustic propagation [3]:

∇P ¼ � μχ
K

� �
V; ð1Þ

where P is the intrinsic pressure, μ is the dynamic viscosity, χ is
the porosity, K is the permeability, and V is the intrinsic velocity.
This expression models the behavior of the acoustic potential
when considering the fluid–pore interactions alone. However,
Payne et al. [4] argue that if a boundary or interface is present, or if
the porosity is near unity, i.e. the fluid–pore interaction is not the
dominating factor, then Brinkman's equation should be used [3]:

∇P ¼ ~μχ∇2V� μχ
K

� �
V: ð2Þ

Here, ~μ is the Brinkman or effective viscosity. This expression not
only accounts for the fluid–pore interaction found in the Darcy

expression, it also models the fluid–fluid interactions. In this work
we will use a finite-difference scheme to investigate the time
evolution of an acoustic wave within a finite boundary.

2. Mathematical formulation and problem statement

As in [5], we obtain the basic governing equation for a weakly
non-linear model based on (2). Assuming 1D flow, conservation of
mass, conservation of momentum, and the quadratic approxima-
tion to the isentropic equation of state [6] take the form:

ϱtþðϱuÞx ¼ 0; ð3Þ

ϱðutþuuxÞ ¼ �Pxþ ~μχuxx�
μχ
K

� �
u; ð4Þ

P ¼Peþϱec
2
e ½sþðβ�1Þs2�; ð5Þ

where ϱ is the mass density and u is the velocity. Here and hen-
ceforth, we will use the notation ηi≔∂η=∂i, where η is a general
variable. Note that the subscript e denotes the (constant) equili-
brium state, c is the adiabatic speed of sound, β is the coefficient of
non-linearity, and s¼ ϱ�ϱe

� �
=ϱe is the condensation.

From these equations, eliminating P from (4) using (5) we get

ϱðutþuuxÞ ¼ �ϱec
2
e ½sþðβ�1Þs2�xþ ~μχuxx�

μχ
K

� �
u: ð6Þ
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We now introduce the following dimensionless quantities,
noting that u¼ϕx, where ϕ¼ϕ (x,t) is the velocity potential:

ϕ⋄ ¼ ϕ
VL

; u⋄ ¼ u
V
; x⋄ ¼ x

L
;

t⋄ ¼ tce
L
; P⋄ ¼P�Pe

ϱeceV
: ð7Þ

Here, V and L are the characteristic speed and length, both positive,
respectively. Also, by introducing the Mach number ϵ¼V/ce, and
after further manipulation as well as using the binomial expansion
approximation, dropping all terms of order O ϵ2

� �
, we obtain [1]

□2ϕþχðReÞ�1ϕtxx�δϕt ¼ ϵ∂t ½ðβ�1Þϕ2
t þϕ2

x �; ð8Þ
where □2 � ∂xx�∂tt is the 1D d'Alembertian operator, Re¼ ceLσe=μ
is a Reynolds number, δ p χ is the dimensionless Darcy coeffi-
cient, and we have dropped the diamond superscripts on the
dimensionless quantities. As in [7], we will now use the Lighthill–
Westervelt approximation:

ϕx � �ϕt ; ð9Þ
on the right hand side of (8). We next differentiate both sides of (8)
with respect to t, and use the approximation:

P � �ϕt ; ð10Þ
which follows from (the dimensionless) Bernoulli's equation. This
substitution, along with the following boundary and initial con-
ditions, gives us the initial boundary-value problem (IBVP):

□2PþχðReÞ�1Ptxx�δPt ¼ �2ϵβ½ðPtÞ2þPðPttÞ�; ð11aÞ

Pðx;0Þ ¼ sin ðπxÞ; Ptðx;0Þ ¼ 0 for ð0oxo1Þ; ð11bÞ

Pð0; tÞ ¼ 0; Pð1; tÞ ¼ 0 for ðt40Þ: ð11cÞ

3. Numerical analysis

3.1. Finite difference scheme construction

With the IBVP having been stated, we will now make use of a
finite difference scheme to find a numerical solution, meaning (11)
must be discretized. The first step is to select the integers IZ2 and
JZ2. Next, we set Δx¼ T=I and Δt ¼ T=J, whereΔx andΔt denote
uniform spatial and temporal step sizes, and T is the value of t for
which the solution is sought. This gives the mesh points xi¼ i(Δx),
for all i¼ 0;1;…; I, and tj ¼ iðΔtÞ, for all j¼ 0;1;…; J.

With this done, we will discretize (11a). We will start by
replacing the second order derivatives with centered difference
quotients, and first order derivatives with a backwards-Euler
quotient. With these replacements, we obtain the difference
equation,

Pj
iþ1�2Pj

iþPj
i�1

Δx2
�Pjþ1

i �2Pj
iþPj�1

i

Δt2

þ χ
Re

ðPj
iþ1�2Pj

iþPj
i�1Þ�ðPj�1

iþ1�2Pj�1
i þPj�1

i�1Þ
Δx2Δt

" #
�δ

Pj
i�Pj�1

i

Δt

 !

¼ �2ϵβ
Pj
i�Pj�1

i

Δt

 !2

þPj
i

Pjþ1
i �2Pj

iþPj�1
i

Δt2

 !2
4

3
5; ð12Þ

where Pj
i � P(xi,tj). Solving for the most advanced time step Pjþ1

i ,
we obtain, after some manipulation, the explicit scheme:

Pjþ1
i ¼Δt

χ
Re

Pj�1
i�1�Pj

i�1�2Pj�1
i þ2Pj

iþPj�1
iþ1�Pj

iþ1

Δx2ð2ϵβPj
i�1Þ

 !

þΔt2
�Pj

i�1þ2Pj
i�Pj

iþ1

Δx2ð2ϵβPj
i�1Þ

 !
þΔtδ

�Pj�1
i þPj

i

2ϵβPj
i�1

 !

þ Pj�1
i �2δPj

iþ2ϵβððPj
iÞ2þPj�1

i Pj
i�ðPj�1

i Þ2Þ
2ϵβPj

i�1

 !
: ð13Þ

The last step involves discretizing the initial and boundary
conditions (11b) and (11c). For details on this straightforward
process see [8]. The resulting conditions are as follows:

P0
i ¼ sin ðπxiÞ; ð14aÞ

∂tP0
i ¼ 0; ð14bÞ

Pj
0 ¼ 0; ð14cÞ

Pj
I ¼ 0: ð14dÞ

3.2. Numerical results

Fig. 1 is a plot of the pressure, P, as a function of position, vs
time. It was plotted with high Darcy coefficient and very high
Reynolds number, of the order of 20,000. We have assumed a
Mach number of 0.01 and a value of the non-linearity coefficient
β¼3.625. This corresponds to seawater at 20 °C and 3.5% salinity
[9]. These values would diminish the Brinkman term enough to
force the system to correspond to the Darcy–Jordan Model (DJM)
[1]. We see that the system does indeed evolve like a damped
oscillator.

Fig. 2 shows the corresponding amplitude of the pressure as a
function of position at various time snapshots.

Fig. 1. P vs x vs t for ϵ¼0.01, δ¼0.5, χ¼ .9, β¼3.625, and Re¼20,000.

Fig. 2. P vs x for ϵ¼0.01, δ¼0.5, χ¼0.9, β¼3.625, and Re¼20,000 at varying times.
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