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a b s t r a c t

The squeeze flow of a Bingham-type material between finite circular disks is considered. The material is
modelled assuming that the unyielded region behaves like a linear elastic core. A lubrication approx-
imation is considered. It is shown that no paradox can arise, such as that has been pointed out for many
years by various authors when the unyielded region in the fluid is supposed to be perfectly rigid. The
unyielded region is shown to be always detached from the axis of symmetry. Some numerical simula-
tions are worked out for different squeezing rates.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The squeeze flow between circular discs is often encountered in
many devices used to determine the flow properties of highly
“viscous” materials such as concrete, molten polymers, ceramic
pastes etc. Most of these materials are constitutively modeled as
Bingham plastics [1], that is continua associated to a “plastic”
criterion (Von Mises) that links the stress state and the yield stress.
Where the criterion is locally satisfied, a velocity gradient arises in
the medium and the body starts to flow as a linear viscous fluid. If
the criterion is not fulfilled, there is no velocity gradient and the
material is stationary or moves as a rigid plug [2]. The yield surface
separating the yielded and unyielded regions is generally
unknown.

In many situations the geometrical setting of the problem is
such that the aspect ratio is negligibly small, so that lubrication
approximation can be used, see [3]. While, on the one hand,
lubrication allows for major simplifications of the governing
equations, on the other, it may cause the emergence of paradoxes
and inconsistencies that invalidate the main constitutive
assumptions. As stated by Covey and Stanmore [3] and subse-
quently by Wilson in [4], there is an immediate difficulty when
one deals with Bingham squeeze lubrication flow as the expected
yield surface clashes with the model. Indeed, simple symmetry
arguments require that the shear stress (which is dominant)
decreases below the yield stress close to the mid-plane. Hence, the
flow criterion is not fulfilled there and an unyielded region forms
around the mid-plane. Because of the cylindrical geometry, the
plug has to be stationary, but, at the same time, the gap between

the plates is being narrowed and the plug has to deform. The
solution thus becomes inconsistent and a paradox arises.

This result, that was first pointed out by Lipscomb and Denn in
[5], led the authors to argue that a true rigid plug cannot exist in
complex geometries, since the lubrication scaling predicts
unyielded plugs that move with a velocity that slowly varies in the
principal flow direction (the so called pseudo-plugs, see [6,7]).
Though the paradox remains true for axisymmetric squeeze flow,
in many other complex geometries asymptotic solutions that
predict truly rigid regions have been found. Balmforth and Craster
[8] have proposed a procedure that allows to construct consistent
solutions for thin-layer problems, a technique subsequently
exploited by Frigaard and Ryan [9] for the Bingham flow in a
channel of slowly varying width.

In the last decades many ways of overcoming the “lubrication
paradox” paradox have been developed. For example Gartling and
Phan-Thien [10] and Wilson [4] have proposed to substitute the
original Bingham model with a bi-viscous model in which the
solid behaviour is never required even for zero shear rate. Others
[11,12] have used exponential viscosity models or power-law fluid
models [13,14]. We refer the readers to [15–18,11], where a vast
literature on such an issue can be found. In particular an exhaus-
tive review of the regularization models and their implementation
can be found in [19], while an excellent review on yield stress
fluids can be found in [20]. Recently Fusi et al. [21] have proposed
a new procedure where the rigid plug is treated as an evolving
non-material volume and where the momentum balance of the
unyielded region is written through an integral formulation. This
procedure allows to determine a true plug at the leading order of
the lubrication approximation with no need to define a pseudo-
plug or a fake yield surface. The same approach has been used in
Fusi et al. [22] to study the squeeze flow of a Bingham fluid in
planar geometry. In the paper by Muravleva [23] the planar
squeeze flow is studied following the technique introduced in
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Balmforth and Craster [8] and Frigaard and Ryan [9]. In the specific
case of axisymmetric squeeze flow Smyrnaios and Tsamopoulos
[11] have shown that unyielded material may exist only around
stagnation points located at the center of the disks and their
results are confirmed by numerical simulations.

In this paper, following an approach developed in [24,25], we
consider the axisymmetric squeeze flow of a Bingham-like mate-
rial and we overcome the lubrication paradox by modelling the
material as a Bingham fluid with a deformable core. In particular
we model the unyielded domain as a linear elastic solid, but other
constitutive relations could be used. By doing this we allow the
solid plug to deform and no paradox arises at the mid-plane
placed between the plates. In practice we are considering a yield
stress fluid which behaves like a linear elastic solid when the
stress is below a fixed threshold. We remark that the idea of
modelling the core as an elastic material dates back to the works
by Oldroyd [2], and by Yoshimura and Prud'homme [26]. However,
to our knowledge, such a model was never applied to the
squeezing between circular discs.

We consider the continuum confined between two parallel
discs, both of radius1 Rn, moving one toward the other in a pre-
scribed way thus causing the squeezing of the fluid (Fig. 1).
Denoting by hnðtnÞ the half distance between discs, we assume

ε¼ Rn

Hn
⪡1; Hn ¼ sup

tn Z0
hnðtnÞ; dhn

dtn
r0; ð1:1Þ

so that the lubrication approximation is justified. We assume that
the material behaves as a linear viscous fluid if the stress is above a
critical threshold τno and as a linear elastic solid when stress state is
below τno . We develop the mathematical model at the leading
order and show that the model predicts the existence of an evol-
ving yield surface which, however, appears only after some time
depending on the squeezing velocity. After the emergence of the
yield surface the domain is split in two regions: (i) an elastic
domain where the material is unyielded; (ii) a sheared domain
where the critical stress is overcome.

We will show that, at the leading order of the lubrication
approximation, the region around the axis of symmetry remains
always unyielded, so that the viscous region is always detached
from that axis. We will perform some numerical simulation for
different given expressions of the squeezing rate plotting the
evolution of the yield surface and of the pressure profile.

2. The Mathematical model

Let us consider a mechanically incompressible continuum
occupying a domain like the one depicted in Fig. 1. Suppose that
two circular plates of radius Rn are squeezing the fluid confined in
between and are approaching each other with prescribed motion
7hnðtnÞ, with 7hnð0Þ ¼ 7Hn. As a consequence, the material is
squeezed out radially. In radial polar coordinates2 the displace-
ment is given by

un ¼ un

r ðrn; zn; tnÞerþun

z ðrn; zn; tnÞer ; ð2:1Þ

while velocity is expressed by

vn ¼ vnr ðrn; zn; tnÞerþvnz ðrn; zn; tnÞer ; ð2:2Þ

We also assume that the displacement is small (infinitesimal strain
theory), so that the Lagrangian description and the Eulerian
description are essentially the same.

Being Tn ¼ �pnIþSn the Cauchy stress tensor, pn ¼ ð1=3Þtr Tn

the pressure, as in [24] we make the following constitutive
assumption for the deviatoric part of Tn:

IInSoτno; Sn ¼ 2ηnþ τno
IInD

� �
Dn; viscous model;

IInSoτno; Sn ¼ 2knE; linear elastic model;
IInS ¼ τno; yield condition;

8>><
>>: ð2:3Þ

where

Dn ¼ 1
2 ∇

n

vnþð∇
n

vnÞT
� �

; E¼ 1
2 ∇

n

unþð∇
n

unÞT
� �

;

� IInS ¼ 1
2S

n � Sn
� �1=2 and IInD ¼ 1

2S
n � Sn

� �1=2 are, respectively, the sec-
ond invariant of Sn and Dn,

� ηn is the viscosity of the fluid, τno the stress yield threshold and
kn the elastic modulus of the solid phase.

In practice the constitutive model (2.3) represents a Bingham-
like material which behaves as a linear elastic body when IInSoτno,
and as a linear viscous fluid as IInS4τno.

Mass balance is given by

∂vnz
∂zn

þ∂vnr
∂rn

þvnr
rn

¼ 0; ð2:4Þ

while momentum conservation in the absence of body force is
expressed by

ϱ ∂vnr
∂tn þvnr

∂vnr
∂rn þvnz

∂vnr
∂zn

� �
¼ �∂pn

∂rn þ 1
rn

∂
∂rn rnSnrr
� 	þ∂Snrz

∂zn �
Snθθ
rn ;

ϱ ∂vnz
∂tn þvnr

∂vnz
∂rn þvnz

∂vnz
∂zn

� �
¼ �∂pn

∂zn þ 1
rn

∂
∂rn rnSnrz
� 	þ ∂Snzz

∂zn :

8><
>: ð2:5Þ

The second invariant of Sn writes

IInS ¼
1
2
Sn � Sn

� �1=2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn

2

rz þ
1
2

Sn
2

rr þSn
2

θθþSn
2

zz

� �� �s
: ð2:6Þ

The non-zero components of Dn and En are

Dn

rr ¼
∂vnr
∂rn

� �
; Dn

zz ¼
∂vnz
∂zn

� �
; Dn

θθ ¼
vnr
rn

� �
Dn

rz ¼
1
2

∂vnr
∂zn

þ∂vnz
∂rn

� �
;

Err ¼
∂un

r

∂rn

� �
; Ezz ¼

∂un
z

∂zn

� �
; Eθθ ¼

un
r

rn

� �
Erz ¼

1
2

∂un
r

∂zn
þ∂un

z

∂rn

� �
;

whereas the second invariant of Dn is more conveniently written

Fig. 1. A schematic representation of the system.

1 Throughout the paper starred quantities indicate dimensional quantities.

2 We assume no deformation/velocity in the θ-direction, as well radial sym-
metry, that is all relevant variables are independent of the polar coordinate θ.
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