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a b s t r a c t

Helicopter Ground Resonance is a dynamic instability involving the coupling of the blades motion in the
rotational plane (i.e. the lag motion) and the motion of the fuselage. This paper presents a study of the
capacity of a Non-linear Energy Sink to control a Helicopter Ground Resonance. A model of helicopter
with a minimum number of degrees of freedom that can reproduce Helicopter Ground Resonance
instability is obtained using successively Coleman transformation and binormal transformation. A the-
oretical/numerical analysis of the steady-state responses of this model when a Non-linear Energy Sink is
attached on the fuselage in an ungrounded configuration is performed. The analytic approach is based on
complexification-averagingmethod together with geometric singular perturbation theory. Four steady-state
responses are highlighted and explained analytically: complete suppression, partial suppression through
strongly modulated response, partial suppression through periodic response and no suppression of the
Helicopter Ground Resonance. A systematic method based on simple analytical criterions is proposed to
predict the steady-state response regimes. The method is finally validated numerically.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Ground Resonance (GR) is a potential destructive mechanical
instability that can occur when a helicopter is on the ground and
the rotor rotates. The phenomenon of GR involves a coupling
between the fuselage motion on its landing gear and the blades
motion in the rotational plane (i.e. the lag motion). It can be
investigated without taking into account the aerodynamical
effects. The standard reference of the GR analysis is the paper by
Coleman and Feingold [1] where it is established that GR is due to
a frequency coalescence between a lag mode and the fuselage
mode. The range of rotors speeds Ω for which this frequency
coalescence occurs is predicted analytically. More references can
be found in [2–4] and a recent analysis of helicopter GR with
asymmetric blades can be found in [5]. Traditionally, GR instability
is prevented by two passive methods: increasing the damping [6]
and modify the stiffness of the rotor blade lag mode or the fuse-
lage mode. Active control of GR has been also studied in [4].

The Targeted Energy Transfer (TET) concept consists in controlling
resonance by using an additional essentially non-linear attachment
also named Non-linear Energy Sink (NES) to an existing primary
linear system. TET has been extensively studied numerically,

theoretically and experimentally, the results prove that the NES is
very efficient for vibration mitigation [7] and noise reduction [8].
Impulsive loading was theoretically analyzed for example in [9]
where TET is investigated in terms of resonance capture. In [10],
harmonic forcing was considered where response regimes are char-
acterized in terms of periodic and strongly modulated responses
using an asymptotic analysis (multi-scale approach) of the averaged
flow obtained using the complexification-averaging method [11]. In
[12] a NES is used to reduce chatter vibration in turning process. An
application of NES as a non-linear vibration absorber in rotor
dynamics can be found in [13] where the efficiency of a collection of
NES is analyzed for vibration mitigation of a rotating system under
mass eccentricity force.

NESs are also used to control dynamic instabilities. The possible
suppression of the limit cycle oscillations of a Van der Pol oscil-
lator utilizing a NES is demonstrated numerically in [14]. In [15]
(resp. [16]), the self-excitation response regimes of a Van der Pol
(resp. Van der Pol-Duffing) oscillator with a NES are investigated.
An asymptotic analysis of the system related to slow/super-slow
decomposition of the averaged flow reveals periodic responses,
global bifurcations of different types and basins of attraction of
various self-excitation regimes. A series of papers [17–19]
demonstrated that a NES coupled to a rigid wing in subsonic flow
can partially or even completely suppress aeroelastic instability. In
[17], the suppression mechanisms are investigated numerically.
Several aspects of the suppression mechanisms are validated
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experimentally in [18]. Moreover, an asymptotic analysis is
reported in [19] demonstrating the existence of the three passive
suppression mechanisms based on TET. Suppression of aeroelastic
instability of a general non-linear multi-degree of freedom system
has also be considered in [20]. Finally, the discussion on rela-
tionship between dimensionality of the super-slow manifold,
structure of the fixed points and the observed response regimes is
explored in review paper [21].

In this context, the use of a NES appears to be an interesting
alternative way to control GR instability which contrasts with the
use of linear lag dampers having high damping value in order to
suppress completely the dynamic instability. For its part, a NES
attachment with a relatively small linear damping and a pure non-
linear stiffness is able to prevent destructive amplitude of oscil-
lations even if GR instability persists. This situations are hereafter
referred as partial suppression mechanisms. The goal of the paper is
therefore to study the effect of attaching an ungrounded NES on
the fuselage of the helicopter for controlling GR instability. A
number of the previous cited papers [14,17,7] use numerical
methods to analyze the frequency interactions of this kind of
essentially non-linear systems. They demonstrate that high-order
resonances between the primary system and the NES may be very
significant for adequate understanding transient dynamics in this
class of non-linear systems. These details are beyond the scope of
the present paper, since we focus on the characterization of the
possible steady-state response regimes of a helicopter ground
resonance model including a ungrounded NES attachment
assuming a simple 1:1 resonance between the primary system (i.e.
the helicopter model) and the NES.

The paper is organized as follows. In Section 2, the simplest
helicopter model reproducing GR phenomenon is presented. It
involves only lag motion of the four blades and one direction of
the fuselage motion. Then, a NES is attached to the fuselage in an
ungrounded configuration leading to the Simplest Helicopter
Model including a NES (hereafter referred as SHMþNES). Pre-
liminary results are presented in Section 3 including the linear
stability analysis of the trivial solution of the SHMþNES. More-
over, using numerical simulations, the section presents also some
steady-state response regimes which result from the NES attach-
ment. We count four regimes classified into two categories
depending on the fact that the trivial solution of the SHMþNES is
stable or not. In Section 4, an analytical procedure based on
complexification-averaging method together with geometric sin-
gular perturbation theory [22] is developed to analyze situations
for which trivial solution of the SHMþNES is unstable. Finally
Section 5 is dedicated to the prediction of the steady-state
response regimes and numerical validation.

2. System under study

The system under study consists of a Simplest Helicopter Model
(SHM) including a Non-Linear Energy Sink (NES). The SHM is first
introduced.

2.1. Simplest Helicopter Model (SHM) that can describe ground
resonance

To carry out the analytical approach presented in this work (in
Section 4) we need to obtain a mechanical model of a helicopter
which can reproduce the ground resonance phenomenon which
has the minimum number of degrees of freedom (DOF). For that, a
reference helicopter model, with 5 DOF (i.e 10 state variables in
state-space) is first presented (Section 2.1.1). Next, it is simplified
using successively Coleman transformation [1] (Section 2.1.2) and

binormal transformation [6] (Section 2.1.3) leading to the SHM
which has 4 state variables in state-space.

2.1.1. Reference model
The reference model is very similar to that described for

example in [2–4]. Here, it describes an idealized helicopter which
consists of a fuselage on which a 4-blades rotor rotates at a con-
stant speed Ω. Moreover, only lag motions are taken into account.

To obtain the equations of motion, a earth-fixed Cartesian
coordinate system is considered where the origin, O, coincides
with the center of inertia Gf of the fuselage at rest and the three
Cartesian axes, x0-axis, y0-axis and z0-axis, are shown in Fig. 1(a).
At rest, the center of inertia of the rotor Gr is also located on the
z0-axis.

The fuselage is a simple damped mass–spring system with only
one translational motion alone the y0-axis characterized by the
coordinate y(t). Each blade is assumed to be a mass point Gi (with
iA ½1;4�) placed at a distance L from the z0-axis. The position of the
ith blade in the x0y0�plane is therefore given by

xGi
ðtÞ ¼ L cos ξiðtÞþδiðtÞ

� � ðaÞ
yGi

ðtÞ ¼ yðtÞþL sin ξiðtÞþδiðtÞ
� �

; ðbÞ

(
ð1Þ

where δiðtÞ is the lagging angle of the ith blade. The lagging angle
is the angle between the current position of the blade and its
equilibrium position ξiðtÞ ¼Ωt�ðπ=2Þði�1Þ (see Fig. 1(b)).

The equations of motion which govern the time evolution of
the five degrees of freedom of the system (the fuselage displace-
ment y(t) and the four lagging angles δiðtÞ) are then derived using

Fig. 1. Descriptive diagram of the used helicopter system. (a) Overview of the
system. (b) View from the top.

B. Bergeot et al. / International Journal of Non-Linear Mechanics 78 (2016) 72–89 73



Download English Version:

https://daneshyari.com/en/article/784944

Download Persian Version:

https://daneshyari.com/article/784944

Daneshyari.com

https://daneshyari.com/en/article/784944
https://daneshyari.com/article/784944
https://daneshyari.com

