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a b s t r a c t

Most porous solids are inhomogeneous and anisotropic, and the flows of fluids taking place through such
porous solids may show features very different from that of flow through a porous medium with con-
stant porosity and permeability. In this short paper we allow for the possibility that the medium is
inhomogeneous and that the viscosity and drag are dependent on the pressure (there is considerable
experimental evidence to support the fact that the viscosity of a fluid depends on the pressure). We then
investigate the flow through a rectangular slab for two different permeability distributions, considering
both the generalized Darcy and Brinkman models. We observe that the solutions using the Darcy and
Brinkman models could be drastically different or practically identical, depending on the inhomogeneity,
that is, the permeability and hence the Darcy number.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The study of pressure driven flow through a porous slab is
motivated by its relevance to the processes of enhanced oil
recovery and carbon-dioxide sequestration. The flux due to the
driving pressure is the quantity of greatest interest and the clas-
sical Darcy equation [1] is the most popular model used to
determine it. One relevant aspect of modelling overlooked by the
Darcy equation is the variation of material properties like density
and viscosity with pressure. Experimental evidence of the varia-
tion of viscosity with pressure for various fluids can be found in
[2–10]. In [11], a class of generalized models appropriate for
studying flow through porous media under large pressure gra-
dients was derived from thermodynamic considerations. Using a
model that takes into account the pressure dependence of visc-
osity and drag, the shortcomings of a conventional approach (that
assumes constant viscosity and drag) were highlighted by the
results obtained in [12] and [13]. It was found that the flux does
not increase indefinitely with driving pressure, but attains a ceiling
value. A similar study of flow due to a pulsatile pressure gradient
was also carried out in [14], again assuming a pressure dependent
viscosity and drag coefficient. In these previous studies, the porous
solid was assumed to be saturated and have uniform porosity, the
flow was assumed steady, and inertial effects were neglected.

It is for the sake of simplicity that the porosity and permeability
to flow are assumed uniform and equal in all direction, i.e., the
porous medium is assumed homogeneous and isotropic with
regard to its permeability. The permeability can then be repre-
sented by a constant scalar k40. However, this is not true in
general, for a porous medium may be heterogeneous. For example
a bed of silt could be interspersed with inclusions of clay, sand or
solid rock in which case the permeability to flow could change not
only with spatial location but direction as well. The most general
representation of the permeability is then in the form of a positive
definite second order tensor that reduces to a diagonal form when
the eigen directions are used as the basis. However, in the sub-
sequent discussion, we shall focus on the case where the perme-
ability is given by a scalar function kðxÞ that depends on spatial
location only, i.e., the permeability is the same in all directions.

The variation in permeability affects the flow of a fluid through
the porous solid, and hence in problems of groundwater hydrology
and petroleum engineering, the determination of the permeability
distribution in a region is of great interest. The permeability dis-
tribution is estimated through experiments on samples, as well as
from geo-statistical data.

Apart from its impact on the flow, the variation in permeability
also poses a significant challenge to computational methods that
seek approximate solutions to the equations that govern the flow of
fluids through porous media. The variation of permeability usually
occurs at a scale much smaller than the physical domain of the
problem. The ratio of scales is so small that it is prohibitive, and
sometimes impossible, to computationally obtain the field quan-
tities with the same resolution as that of the given permeability
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data. In other words, the number of degrees of freedom required to
discretize the domain at the scale of variation of the permeability is
so large that solving the discretized system exceeds our computing
power. This hurdle has spawned an entire field of research into the
so called “multi-scale” or “reduced-order” approximations (see
[15–17] for details).

However, our concern here is restricted to the features of the
fluid response arising due to the inhomogeneity of the medium. In
particular, we would like to get a qualitative idea of its effect on
the flux in a pressure driven flow through a heterogeneous
rectangular slab.

The slab, which is assumed rigid, has a permeability distribu-
tion kðxÞ40. We shall consider a benchmark example of a per-
meability dataset that is used by the practicing petroleum engi-
neers to simulate field conditions for the problem after we con-
sider a simpler, idealized case of a rectangular region with a single
circular inclusion in order to gain some clear insight into the flow
of fluids through inhomogeneous porous media. The permeability
is piecewise constant on the indicated regions Ω0 and Ω1. That is,

kðxÞ ¼
k0 8xAΩ0

k1 8xAΩ1

(
ð1:1Þ

The interface to the two sub-domains is denoted by Γ. The left end
is at a high pressure while the right end is at low (atmospheric)
pressure.

Some problems of this type have been studied earlier. The
steady flow of a Navier–Stokes fluid past a porous interface has
been studied in [18,19]. The flow of fluid through and past a por-
ous cylinder, and its variants, has been considered in [20,21]. These
studies approached the problem from the vantage point of exter-
nal flow, and the authors were interested in the question of drag
due to the inclusion, the formation of a wake, separation of flow,
etc. In these studies, two different flow regimes were considered,
namely, the flow of clear fluid and flow through a porous medium.
Hence, the authors had to deal with the question of boundary
conditions at the interface. With a similar viewpoint, the flow
through a porous medium with a rigid inclusion has been con-
sidered in [22]. However, because the inclusion is assumed
impermeable, there is no flow through it, and the velocity is
assumed to satisfy the no-slip condition on the surface. The work
presented in [23] is the one most relevant in aims and scope to
ours here, for the flow through a porous medium is considered,
containing an elliptical inclusion with a different permeability. An
exact solution is found using stream-functions and complex
potentials and the flux is obtained as a function of the contrast
(permeability ratio) and aspect ratio of the ellipse. However, the
authors worked with a classical model with constant coefficients,
which is what allowed them to find a closed form exact solution
for the problem.

In contrast, we work with the generalized models that were
used in [13,14], in which the viscosity and the drag coefficients are
functions of pressure. We will be interested in the flux as before,
and also the streamlines of the flow through the medium.

Our second example (Fig. 2) is drawn from the top layer of the
benchmark dataset [24], and it substantiates the point made ear-
lier that the permeability distribution in porous media can be very
complex and show large contrast.1

2. Governing equations

We neglect the effect of gravity on the flow, and assume that
the fluid is incompressible. We also assume that the flow is steady
and inertial non-linearities are negligible. The classical Darcy and
Brinkman models are derived under a host of assumptions, and
these models are not appropriate in applications involving large
pressure gradients (see [13] for a detailed discussion of the rele-
vant issues). Under high pressures, the viscosity of the fluid that
appears in the model is not a constant, rather it varies exponen-
tially with pressure.

This is represented by the Barus formula [25]:

μðpÞ ¼ μ0 expðβpÞ; ð2:1Þ

where the exponent βZ0 depends on the fluid under considera-
tion. From the experiments reported in [26–28] the measured
value of the reciprocal of the pressure–viscosity exponent β is seen
to lie in the range 30–100 MPa for the fluids measured.

Hence we model the flow using particular instances of a gen-
eralized Darcy or generalized Brinkman model.

We denote by Γ a curve in the domain across which the
function kðxÞ suffers a discontinuity.

2.1. The generalized Darcy equations

The generalized Darcy equation relates the pressure gradient to
the velocity by

�grad½p� ¼ μðpÞ
k

v inΩ0 [ Ω1 ð2:2Þ

div½v� ¼ 0 inΩ0 [ Ω1 ð2:3Þ

with boundary conditions

p
��
AB ¼ phigh ð2:4Þ

Fig. 1. The inhomogeneous slab ABCD is rigid and porous, hence permeability kðx
Þ ¼ ki 8xAΩi is discontinuous. High pressure at AB and low pressure at CD leads to a
pressure gradient that drives the flow. No flow is possible through BC and AD.

Fig. 2. Colourmap of the top layer of the inhomogeneous permeability dataset
obtained from [24]. The permeability kðxÞ is piecewise constant. Note the large
contrast of the medium.

1 Contrast is defined as the ratio of the maximum and minimum permeability
values.
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