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a b s t r a c t

Criteria are established for higher order ordinary differential equations to be compatible with lower
order ordinary differential equations. Necessary and sufficient compatibility conditions are derived
which can be used to construct exact solutions of higher order ordinary differential equations subject to
lower order equations. We provide the connection to generalized groups through conditional symme-
tries. Using this approach of compatibility and generalized groups, new exact solutions of non-linear
flow problems arising in the study of Newtonian and non-Newtonian fluids are derived. The ansatz
approach for obtaining exact solutions for non-linear flow models of Newtonian and non-Newtonian
fluids is unified with the application of the compatibility and generalized group criteria.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Considerable attention has been given in recent times to finding
the exact solutions of differential equations describing the behavior
of non-Newtonian fluids. Due to the increasing importance of non-
Newtonian fluids in innovative technology and modern industries,
the motivation of investigators to study problems dealing with the
flow of non-Newtonian fluids has increased enormously. Modelling
non-Newtonian flows is important for understanding and predict-
ing the behavior of processes and thus for designing optimal flow
configurations and for selecting conditions.

Fluids are classified into two broad categories: Newtonian fluids
and non-Newtonian fluids. Fluids which satisfy a linear relation
between the stress and rate-of-strain are classified as Newtonian
fluids. However, most fluids in industry do not adhere to the
commonly accepted assumption of a linear relationship between
the stress and the rate-of-strain and thus are characterized as non-
Newtonian fluids. The flow behavior of non-Newtonian fluids is
quite different from that of Newtonian fluids. Therefore, in practical
applications one cannot replace the behavior of non-Newtonian
fluids with that of a Newtonian fluid. It is important to understand
the physical behavior of non-Newtonian fluids in order to improve
their utilization in various manufacturing processes.

The most challenging task that we need to address when dealing
with flow problems of Newtonian and non-Newtonian fluids is that
the governing equations of these models are of a high order and
complicated in nature. Such fluids are modelled by constitutive
equations which vary greatly in complexity. Thus, the resulting non-
linear equations are not easy to solve exactly. These exact solutions,
if available, facilitate the verification of numerical codes and are also
helpful in a stability analysis. Consequently, exact (closed-form)
solutions of flow models of Newtonian and non-Newtonian fluids
are important. Several methods have been developed in recent
years to obtain the solutions of these fluid models. Some of the
techniques are the variational iteration method, Adomian decom-
position method, homotopy analysis method, homotopy perturba-
tion method, simplest equation method, semi-inverse variational
method and the exponential function method. However, all these
methods have certain limitations and in general fail to derive exact
closed-form solutions for non-linear models of Newtonian and non-
Newtonian fluids.

A significant extension of classical Lie symmetry groups for partial
differential equations (PDEs) is that of non-classical symmetry or
generalized group analysis [1,2]. For PDEs, Olver and Rosenau [3]
have demonstrated by means of examples that the construction of
various special solutions to PDEs can effectively be deduced by a
single method consisting of adding one or more side conditions to
the PDE under investigation. The side conditions are always chosen
to simplify the study of the PDE in question. Pucci and Saccomandi
[4] state that “the classical method employed in fluid dynamics
of finding exact solutions is an application of this idea”. The side
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conditions which express the invariance of the PDE solutions with
respect to a continuous group of point transformations are studied in
[4] where an algorithm is defined to characterize weak symmetry
groups of PDEs. Here we consider a unifying approach to the problem
of side conditions for ODEs that arise in fluid mechanics. The
conditional symmetries of ODEs from the algorithmic viewpoint
have been discussed in detail by Fatima and Mahomed [5] as well as
Mahomed and Qadir [6]. This allows one to construct particular
compatible side conditions to the given ODE in order to deduce exact
solutions if there is a sufficient supply of conditional symmetries. We
utilize the compatibility and conditional symmetry approach for the
exact solvability of ODEs arising from fluid mechanics and provide
a unified treatment.

In recent years, the ansatz method has been used to construct
exact solutions of non-linear differential equations arising in the study
of Newtonian and non-Newtonian fluids. In the ansatz method
different forms of the solution are assumed and different techniques
are used to develop analytical results. In this paper, we present a
unified treatment to classify exact solutions of models of Newtonian
and non-Newtonian fluids which are solved using different techniques
[7–41]. We develop a general compatibility and conditional symmetry
approach and then apply it to several existing studies in a unified
manner. We construct some new exact solutions and also reconstruct
some existing exact solutions of non-linear problems for Newtonian
and non-Newtonian fluids using the concept of compatibility and
generalized group. Some of these models were previously solved by
the ansatz approach but not in a systematic way.

In this paper, we first give a rigorous definition of compatibility
and then developed a general compatibility test for a higher order
ordinary differential equation (up to fifth-order) to be compatible
with a first order ordinary differential equation. We then connect
this to generalized groups, viz. conditional symmetry groups. This
can be extended in a natural way to higher order with existing
computer codes. Several examples [7–41] from the literature are
presented to which the compatibility and group approach is
applied and new as well as existing exact solutions are deduced
from a single viewpoint in a unified manner.

2. Compatibility approach

It is often difficult to obtain exact solutions of a higher order non-
linear differential equation. For this reason, many researchers have
assumed a form of the exact solution by trial and error. We provide a
general compatibility and generalized group criteria for many of
these higher order ordinary differential equations arising in the study
of Newtonian and non-Newtonian fluid models. This compatibility
and group approach leads to some new exact solutions of these
models and is also helpful in reproducing existing solutions. Thus the
approach here unifies the explicit solution construction for all ansatz
approaches considered.

Firstly, we present a precise definition of compatibility.

Definition 1. Consider the nth-order ordinary differential equa-
tion:

yðnÞ ¼ Pðx; y; yð1Þ; yð2Þ;…; yðn�1ÞÞ; nZ2; ð1Þ
where x is the independent variable, y the dependent variable and
yð1Þ; yð2Þ;…; yðnÞ denote the first, second,…,nth derivative of y with
respect to x. If every solution of the mth-order ordinary differential
equation:

yðmÞ ¼Q ðx; y; yð1Þ; yð2Þ;…; yðm�1ÞÞ; mon; ð2Þ
is also a solution of the nth-order ordinary differential Eq. (1), then the
mth-order ordinary differential Eq. (2) is said to be compatible with
the nth-order ordinary differential Eq. (1).

We will consider the compatibility of a nth-order (nZ2) ordi-
nary differential equation with a first order ordinary differential
equation so that m¼1.

2.1. Compatibility criterion for a fifth order ordinary differential
equation

Here we develop a compatibility criterion or compatibility test
for a fifth order ordinary differential equation to be compatible
with a first order ordinary differential equation.

Let us consider a fifth-order ordinary differential equation in
one independent variable x and one dependent variable y:

Fðx; y; yð1Þ; yð2Þ;…; yð5ÞÞ ¼ 0; ð3Þ
and a first order ordinary differential equation:

Eðx; y; yð1ÞÞ ¼ 0; ð4Þ
such that

J ¼ ∂½E; F�
∂½yð1Þ; yð2Þ;…; yð5Þ�a0: ð5Þ

Then, we can solve for the highest derivatives as

yð5Þ ¼ f ðx; y; yð1Þ; yð2Þ; yð3Þ; yð4ÞÞ; ð6Þ
and

yð1Þ ¼ eðx; yÞ; ð7Þ
where f and e are smooth and continuously differentiable functions
of x, y and, in the case of f, the derivatives of y.

Now Eq. (6) depends on yð1Þ;…; yð5Þ which are obtained by
differentiating Eq. (7). This gives

yð2Þ ¼ exþeey; ð8Þ

yð3Þ ¼ exxþ2eexyþe2eyyþexeyþee2y ; ð9Þ

yð4Þ ¼ exxxþ3eexxyþ3e2exyyþe3eyyyþ3eeyyðexþeeyÞ
þ3exyðexþeeyÞþeyðexxþ2eexyþe2eyyþexeyþee2y Þ ð10Þ

yð5Þ ¼ exxxxþ4eexxxyþ6e2exxyyþ4e3exyyyþe4eyyyyþ6e2eyyyfexþeeyg

þ12eexyyfexþeeygþ4eeyyfexxþ2eexyþe2eyyþexeyþee2yg
þ5exxyfexþeeygþ4exyfexxþ2eexyþe2eyyþexeyþee2yg
þey½exxxþ3eexxyþ3e2exyyþe3eyyyþ3eeyyfexþeeyg
þ3exyfexþeeygþeyfexxþ2eexyþe2eyyþexeyþee2yg�þ3e2eyy:

ð11Þ
By equating the right hand side of Eq. (6) with Eq. (11), we obtain

f ½x; y; e; ðexþeeyÞ; exxþ2eexyþe2eyyþexeyþee2y
� �

;

ðexxxþ3eexxyþ3e2exyyþe3eyyyþ3eeyyðexþeeyÞ
þ3exyðexþeeyÞþeyðexxþ2eexyþe2eyyþexeyþee2y ÞÞ�

¼ exxxxþ4eexxxyþ6e2exxyyþ4e3exyyyþe4eyyyyþ6e2eyyyfexþeeyg
þ12eexyyfexþeeygþ4eeyyfexxþ2eexyþe2eyyþexeyþee2yg
þ5exxyfexþeeygþ4exyfexxþ2eexyþe2eyyþexeyþee2yg
þey½exxxþ3eexxyþ3e2exyyþe3eyyyþ3eeyyfexþeeyg
þ3exyfexþeeygþeyfexxþ2eexyþe2eyyþexeyþee2yg�
þ3e2eyy; ð12Þ

which gives the general compatibility criterion or compatibility
test for a fifth order ordinary differential equation to be compa-
tible with a first order ordinary differential equation.
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