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a b s t r a c t

Multi-scale vibratory energy exchange between a main oscillator including Saint-Venant term and a
cubic non-linear energy sink is studied. Analytically obtained invariant manifold of the system at a fast
time scale and detected fixed points and/or fold singularities at a first slow time scale let us predict and
explain different regimes that the system may face during the energy exchange process. The paper will
be accompanied by some numerical results confirming our analytical predictions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It has been proved that by endowing non-linear innate of some
special light attachments, namely non-linear energy sink (NES), it is
possible to localize the vibratory energy of important oscillators
(which are mainly linear) or to suppress the chaos [1–6]. This
localization can be for the aim of passive control and/or energy
harvesting. The phenomenon is called energy pumping. The efficiency
of NES systems in controlling main systems (e.g. in the field of
acoustics, civil and mechanical engineering) has been proved experi-
mentally as well [7–13]. Some works have been carried out in order to
consider other types of non-linearities for the NES: Nucera et al. [14],
Lee et al. [15] and Gendelman [16] studied energy pumping in systems
with vibro-impact NES. The energy pumping in a two dof system
consisting of a linear dof and a NES with non-polynomial potential
investigated by Gendelman [17]. Lamarque et al. [18] pinpointed the
energy pumping phenomenon from a linear master dof system to a
non-smooth NES under different forcing conditions while the same
system in the presence of the gravity was studied by Ture Savadkoohi
et al. [19]. Some researchers took into account the vibratory energy
exchange between a non-smooth main oscillator and a coupled non-
smooth/cubic NES: Schmidt and Lamarque [20] by endowing techni-
ques of [21–23] studied energy transfer from an initial single dof

system including non-smooth terms of friction to a cubic NES. The
behavior of two coupled non-smooth systems by detecting their
invariant manifolds at different scales of time and finally their fixed
point is enlightened in [24]. Ture Savadkoohi and Lamarque [25]
analyzed dynamics and energy exchanges between a non-linear main
structure of Dahl type and a non-smooth NES by detecting all possible
fixed points and fold singularities and explaining different regimes of
the system. In this paper we would like to analytically investigate on
the multi-scale energy exchange between two oscillators, namely a
main one including Saint-Venant term and a coupled cubic NES. Our
analytical developments will be accompanied by some numerical
examples. Organization of the paper is as follows: Academic model
of the system, its re-scaling and averaging processes are given in
Section 2. Time multi-scale behaviors of the system by detecting its
invariant manifold and fixed points/fold singularities are described in
Section 3. Some numerical results and their comparisons with our
analytical developments are illustrated in Section 4. Finally, conclu-
sions are given in Section 5.

2. The general presentation of the system

We consider a two dof system that is represented in Fig. 1. The
main oscillator (M, k, ~λ) with a Saint-Venant type behavior ( ~kp, α)
is coupled to a NES (m, ~C1, ~λ1) with cubic potential. The mass ratio
between two oscillators is very small, i.e. 0oϵ¼m=M{1.
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Governing equations of the described system in Fig. 1 are
summarized as follows:

M
d2x

dt2
þ ~λ

dx
dt

þ ~λ1
dx
dt

�dy
dt

� �
þkxþ ~kpuþ ~C1Fðx�yÞ ¼ f 1ðtÞ

m
d2y

dt2
þ ~λ1

dy
dt

�dx
dt

� �
þ ~C1Fðy�xÞ ¼ 0

du
dt

þβ
~kpu
α

 ! !
3 dx

dt

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ

with F : s↦s3 representing the cubic potential of the NES and 3
refers a differential inclusion. The graph of β, which is illustrated
in Fig. 2, is defined as follows:

βðxÞ ¼

∅ if xA ��1; �1½[�1; þ1½
0 if xA ��1;1½
R� if x¼ �1
Rþ if x¼ 1

8>>>><
>>>>:

ð2Þ

Let us suppose that τ¼ t
ffiffiffiffiffiffiffiffiffiffi
k=M

p
¼w1t. We introduce the following

variables: ~λw1=Mw2
1 ¼ ϵλ0, ~kp=Mw2

1 ¼ ϵkp, ~C1=Mw2
1 ¼ ϵC10, ~λ1w1=

Mw2
1 ¼ ϵλ10, f 1ðτ=w1Þ=Mw2

1 ¼ ϵf 10 sin ðΩτÞ, η¼ α= ~kp. System (1)
reads (for any arbitrary function V, dV=dτ is denoted by V0) as follows:

x″þϵλ0x0 þϵλ10ðx0 �y0ÞþxþϵkpuþϵC10Fðx�yÞ ¼ ϵf 10 sin ðΩτÞ
ϵy″þϵλ10ðy0 �x0ÞþϵC10Fðy�xÞ ¼ 0

u0 þβ
u
η

� �� �
3 x0

8>>><
>>>:

ð3Þ
Coordinates of the center of mass and relative displacement of two
masses are introduced as follows:

v¼ xþϵy
w¼ x�y

(
3

x¼ vþϵw
1þϵ

y¼ v�w
1þϵ

8>><
>>: ð4Þ

System (3) in new coordinates is defined as follows:

v″þϵλ0
v0 þϵw0

1þϵ
þvþϵw

1þϵ
þϵkpu¼ ϵf 10 sin ðΩτÞ

w″þϵλ0
v0 þϵw0

1þϵ
þvþϵw

1þϵ
þϵkpuþð1þϵÞðλ10w0 þC10FðwÞÞ ¼ ϵf 10 sin ðΩτÞ

u0 þβ
u
η

� �� �
3 v0 þϵw0

1þϵ

8>>>>>>><
>>>>>>>:

ð5Þ
We assume that ~τ ¼Ωτ and then the following complex variables of
Manevitch [26] are introduced to the system (5) (for any arbitrary
function V, dV=d ~τ is denoted by _V )

ϕ1e
i ~τ ¼Ωð _vþ ivÞ

ϕ2e
i ~τ ¼Ωð _wþ iwÞ

ϕ3e
i ~τ ¼Ωð _uþ iuÞ

8><
>: ð6Þ

We endow the Galerkin method using a truncated Fourier series. In
this paper we consider only the first harmonic, i.e. ei ~τ , for each
equation. Based on the general periodic behavior of system variables,
we obtain (see for example [19])

Ω _ϕ1 �
Ω
2i
ϕ1þ

ϵλ0ðϕ1þϵϕ2Þ
2ð1þϵÞ þ ϕ1þϵϕ2

2iΩð1þϵÞ þ
ϵkp
2Ωi

ϕ3 ¼ ϵ
f 10
2i

Ω _ϕ2 �
Ω
2i
ϕ2þ

ϵλ0ðϕ1þϵϕ2Þ
2ð1þϵÞ þ ϕ1þϵϕ2

2iΩð1þϵÞ þ
ϵkp
2Ωi

ϕ3

þð1þϵÞ C10Fþλ10
2
ϕ2

� �
¼ ϵ

f 10
2i

ϕ3 ¼
ϕ1þϵϕ2

ð1þϵÞπ ξ
jϕ1þϵϕ2j
ð1þϵÞΩ

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð7Þ

where

8zARþ ; ξðzÞ

¼
π if zrη

θþe� iθ sin ðθÞ�4e� iθ=2 sin
θ
2

� �
�4η

z
e� iðθþπ=2Þ if z4η

8><
>:

ð8Þ
and

θ¼ arccos 1�2η
z

� �
ð9Þ

We will analyze system behavior around 1:1 resonance (i.e.
Ω¼ 1þϵs) by using a multiple scales approach.

3. Multi-scale analysis of the system

An asymptotic approach [27] will be used by introducing fast
time τ0 and slow times τ1, τ2,…

~τ ¼ ~τ0; ~τ1 ¼ ϵ ~τ0; ~τ2 ¼ ϵ2 ~τ0;… ð10Þ
so

d
d ~τ

¼ ∂
∂ ~τ0

þϵ
∂

∂ ~τ1
þϵ2

∂
∂ ~τ2

þ⋯ ð11Þ

We study the system at different orders of ϵ.

3.1. ϵ0 order

At the ϵ0 order, the following equations can be derived from the
system (7):

∂ϕ1

∂ ~τ0
¼ 0 ) ϕ1 ¼ϕ1ð ~τ1Þ ð12Þ

∂ϕ2

∂ ~τ0
�ϕ2

2i
þϕ1

2i
þC10Fþλ10

2
ϕ2 ¼ 0 ð13Þ

Fig. 1. Academic model of the system.

Fig. 2. Graph of β function in Eq. (1).
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