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a b s t r a c t

In this work we generalize the models for non-linear waves in a gas–liquid mixture taking into account
an interphase heat transfer, a surface tension and a weak liquid compressibility simultaneously at the
derivation of the equations for non-linear waves. We also take into consideration high order terms with
respect to the small parameter. Two new non-linear differential equations are derived for long weakly
non-linear waves in a liquid with gas bubbles by the reductive perturbation method considering both
high order terms with respect to the small parameter and the above-mentioned physical properties. One
of these equations is the perturbation of the Burgers equation and corresponds to main influence of
dissipation on non-linear waves propagation. The other equation is the perturbation of the Burgers–
Korteweg–de Vries equation and corresponds to main influence of dispersion on non-linear waves
propagation.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A liquid with gas bubbles has many applications in nature,
industry and medicine [1,2]. Non-linear wave processes in a gas–
liquid mixture were studied for the first time in works [3–5]. The
Burgers, the Korteweg–de Vries and the Burgers–Korteweg–de-
Vries equations were obtained in [3–5] for the description of long
weakly non-linear waves. The fourth-order non-linear evolution
equation for non-linear waves in a gas–liquid mixture was
obtained in [6,7] taking into account an interphase heat transfer.
Non-linear waves in a liquid with gas bubbles in the three-
dimensional case were considered in [8]. Linear waves in a gas–
liquid mixture under the van Wijngaarden's theory were studied
in [9,10]. In [11] propagation of linear waves in a liquid containing
gas bubbles at finite volume fraction was considered.

In the previous studies of non-linear waves in a liquid containing
gas bubbles only the first-order terms with respect to the small
parameter were taken into account. On the other hand we know that
using high order terms with respect to the small parameter at the
derivation of non-linear evolution equations allows us to obtain a
more exact description of non-linear waves [12–23]. Also taking into
account high order correction in equations for non-linear waves one
can reveal important physical phenomena, such as interaction
between dissipative and dispersive processes in a gas–liquid mixture
and its influence on waves propagation, new mechanisms of waves
dispersion and dissipation. Thus, it is important to study non-linear

waves in a liquid with gas bubbles taking into account second-order
terms in the asymptotic expansion.

We investigate non-linear waves in a liquid with gas bubbles
taking into consideration not only high order terms with respect to
the small parameter but the surface tension, liquid viscosity,
interphase heat transfer and weak liquid compressibility as well.
To the best of our knowledge the influence of these physical
properties on non-linear waves propagation simultaneously was
not considered previously.

The aim of our work is to study long weakly non-linear waves
in a liquid with gas bubbles taking into account both high order
terms in the asymptotic expansion and the above-mentioned
physical properties in the model for non-linear waves. We use
the reductive perturbation method for the derivation of differen-
tial equations for non-linear waves.

We apply the concept of the asymptotic equivalence, asympto-
tic integrability and near-identity transformations [12,13,15,17,18]
for studying non-linear equations for long waves in a gas–liquid
mixture. Asymptotically equivalent equations obtained in this work
are connected to each other by a continuous group of non-local
transformations [17,18]. These transformations are near-identity
transformations. Thus, we introduce families of asymptotically
equivalent equations for long weakly non-linear waves in a liquid
containing gas bubbles at quadratic order. As far as all these
equations are equivalent we can use a more convenient and
simple equation within this family. This equation is a normal form
equation. Such approach for the investigation of non-linear evolu-
tion equation was proposed in works [12,13]. Near-identity trans-
formations are often named Kodama's transformations.

We derive two new non-linear differential equations for long
weakly non-linear waves in a liquid with gas bubbles by the reductive
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perturbation method. In the case of dissipation main influence non-
linear waves are governed by the perturbation of the Burgers equation.
The perturbation of the Burgers–Korteweg–de Vries equation corre-
sponds to the main influence of dispersion on non-linear waves
propagation.

We analyze dispersion relations for both equations. Near-
identity transformations are used to obtain normal forms for the
above-mentioned equations. We show that a normal form for the
equation in the dissipative case can be linearized under a certain
condition on physical parameters. It is worth noting that this
condition is realizable for physically meaningful values of para-
meters. Analytical solution of the general dissipative equation in
the form of a weak shock wave is obtained and analyzed.

Two cases of a normal form equation are analyzed provided
that dispersion has the main influence. The first one is the case of
negligible dissipation (purely dispersive case) where non-linear
waves are governed by the generalized Korteweg–de Vries equa-
tion [24]. We show that the generalized Korteweg–de Vries
equation for non-linear waves in a liquid with gas bubbles is
asymptotically equivalent to one of the integrable fifth-order
evolution equations that are the Lax, the Sawada–Kotera and the
Kaup–Kupershmidt equations. The general form of the dispersive
non-linear evolution equation seems to be non-integrable. How-
ever, this equation admits analytical solitary wave solutions.

The rest of this work is organized as follows. In Section 2 we
give the basic system of equations for non-linear waves in a liquid
with gas bubbles. We discuss the dispersion relation for linear
waves as well. The main non-linear differential equation for long
weakly non-linear waves is obtained by the reductive perturbation
method. The non-linear waves with the main influence of dissipa-
tion are studied in Section 3. Section 4 is devoted to the
investigation of non-linear waves in the case of dispersion main
influence. In Section 5 we briefly discuss our results.

2. Main differential equation for long weakly non-linear
waves in a liquid with gas bubbles

For studying non-linear waves in a liquid with gas bubbles we use
the homogeneous model [1,2]. We consider a bubble–liquid mixture
as a homogeneous mediawith an average pressure, an average density
and an average velocity. We do not take into account interaction,
formation, destruction and coalescence of bubbles. Thus, the amount
of gas bubbles in the mass unit is the constant N. We assume that all
gas bubbles are spherical. The nearly isothermal approximation [25] is
used for the modeling of heat transfer between a gas in bubbles and a
liquid. In this approximation it is supposed that the temperature of the
liquid is not changed and is equal to the temperature of the mixture
in the unperturbed state (T0) [25]. We consider influence of the
liquid viscosity only at the interphase boundary. Also we take into
consideration the weak compressibility of the liquid using the Keller–
Miksis equation for the description of bubbles dynamics [26,27]. Also
we consider the one-dimensional case. In these assumptions we can
use the following system of equations for the description of non-linear
waves in the liquid with gas bubbles [1,2]:
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We use the following notations in system (1): ξ is the cartesian
coordinate, τ is the time, ρðξ; τÞ is the density of the bubble–liquid
mixture, Pðξ; τÞ is the pressure of the mixture, ~uðξ; τÞ is the velocity of
the mixture, R¼ Rðξ; τÞ is the bubbles radius, ρl;ρgðξ; τÞ are the
densities of the liquid and the gas respectively, Pgðξ; τÞ is the pressure
of the gas in bubbles, Pg;0 and R0 are the pressure and the radius of
bubbles in the unperturbed state respectively, ϕ is the volume gas
content, V is the specific volume of the gas in the mixture, s is the
surface tension, νl is the kinematic liquid viscosity, γg is the ratio of the
specific heats for the gas, χg is the thermal diffusivity of the gas, Kg is
the thermal conductivity of the gas, K 0

0 ¼ dK=dT at T ¼ T0, where T0 is
the temperature of the mixture in the unperturbed state.

The first two equations from system (1) are the continuity
equation and the Euler equation for the mixture. Let us note that at
the derivation of Eq. (1c) for bubbles' dynamics the liquid viscosity
at the inter-phase boundary, the slight liquid compressibility and
surface tension were taken into consideration [26,27]. Eq. (1d) was
obtained in [25] under assumption that the gas temperature in the
bubble deviates little from the temperature in the unperturbed
state. Eqs. (1e) and (1f) are definitions of the gas–liquid mixture
density, the volume gas content and the specific volume of the gas
in the mixture correspondingly.

Let us note that the approach based on the theory of thermo-
microstretch fluid [28] can be used for the description of a
gas–liquid continuum. For example, acceleration waves in a thermo-
microstretch fluid were studied in [28].

We suppose that the pressure and density of the mixture in the
unperturbed state are constants and all bubbles have the same
radius and are uniformly distributed in the liquid.

Assuming that the volume gas content is small ϕ51 from (1e)
to (1f) we obtain

ρ¼ ρl

1þρl V
; V ¼ 4

3
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This equation connects the density of the bubble–liquid mixture
with the bubbles radius.

We use the following initial conditions:

t ¼ 0 : P ¼ Pg ¼ P0; P0 ¼ const:

Let us suppose that deviation of the mixture density is small:

ρðξ; τÞ ¼ ρ0þδ ~ρðξ; τÞ; ρ0 ¼ const; δ¼ Jρ�ρ0 J
ρ0

51;

ρðξ;0Þ ¼ ρ0; ð3Þ

where δ is a small parameter corresponding to small deviations of
the mixture density from its equilibrium value.

Using formula (3) from (2) with accuracy up to δ2 we obtain
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Substituting (3) and (4) into Eqs. (1a)–(1d) and using the
dimensionless variables

ξ¼ L ξ0; τ¼ L
c0

τ0; ~u ¼ δc0 ~u 0; ~ρ ¼ ρ0 ~ρ
0; P ¼ δP0 P
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