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a b s t r a c t

We investigate the control of friction-induced vibrations in a system with a dynamic friction model
which accounts for hysteresis in the friction characteristics. Linear time-delayed position feedback
applied in a direction normal to the contacting surfaces has been employed for the purpose. Analysis
shows that the uncontrolled system loses stability via. a subcritical Hopf bifurcation making it prone to
large amplitude vibrations near the stability boundary. Our results show that the controller achieves the
dual objective of quenching the vibrations as well as changing the nature of the bifurcation from
subcritical to supercritical. Consequently, the controlled system is globally stable in the linearly stable
region and yields small amplitude vibrations if the stability boundary is crossed due to changes in
operating conditions or system parameters. Criticality curve separating regions on the stability surface
corresponding to subcritical and supercritical bifurcations is obtained analytically using the method of
multiple scales (MMS). We have also identified a set of control parameters for which the system is stable
for lower and higher relative velocities but vibrates for the intermediate ones. However, the bifurcation
is always supercritical for these parameters resulting in low amplitude vibrations only.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Friction-induced vibrations, a type of self-excited oscillations
[1,2], are frequently encountered in many engineering systems
with sliding components. Some typical examples are brake-squeal
[3], train curve squeal [4], clutch chatter [5], machine-tool chatter
[6], friction-induced vibrations in robotic joint [7] and lead screw
drives [8]. The energy needed for these vibrations comes from a
drive system which is in frictional contact with the system of
interest. The variable friction force between the contacting sur-
faces then causes the instability of the driven system. These
vibrations should be controlled as they affect the proper operation
and performance of these systems. In this paper, we apply time-
delayed feedback to control friction-induced vibrations in a system
with a dynamic friction model which captures the hysteretic
behavior of the friction force frequently observed in experiments.
The efficacy of the linear controller applied normal to the friction
force in controlling the nature of bifurcation along with quenching
these vibrations is also investigated.

There is a vast literature related to research on friction-induced
vibrations. The first and the most crucial step in these studies is to

identify the instability mechanism which causes these vibrations
in the system under consideration. Instability due to the presence
of an effective negative damping in the governing equations of
motion [9–12] is the mostly studied mechanism in the literature.
The negative damping in the system appears due to the drooping
characteristic of the friction force in the low relative velocity
regime (also known as the Stribeck effect). For systems with
multiple degrees of freedom, this negative damping introduces
an indefinite damping matrix in the linearized system which is a
source of subcritical flutter and squeal [12]. The other two widely
studied mechanisms are the mode coupling instability [13–15] and
the sprag-slip instability [16,17]. These two instability mechan-
isms, however, do not require variable friction coefficient to induce
vibrations. We will only consider the instability due to the Stribeck
effect of the friction force in this paper.

Modeling friction force to describe different experimentally
observed friction phenomena is an inherent part of the study of
frictional instability. Over the past few decades, several phenom-
enological friction models with varying degrees of complexity
have been proposed in the literature [9–11,20–26]. These friction
models, according to their functional forms, can be divided into
three categories: (i) static friction models [9,10], (ii) dynamic
friction models [21–24] and (iii) acceleration-dependent friction
models [25,26]. The friction force for the static friction model
depends on the relative velocity of the contacting surfaces only.
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Some typical examples of static friction models are the Coulomb
friction model and different Stribeck friction models. These friction
models cannot describe the hysteretic effects of friction and so,
dynamic friction models wherein the friction force depends on some
internal variable and acceleration-dependent friction models with
the force depending on the relative acceleration are developed.

Several researchers have experimentally observed the hysteretic
or non-reversible characteristics of friction [18,19,25,26] and so, it is
an important factor for the complete description of the friction
phenomena. In our earlier studies on the control of friction-induced
vibrations, we have mainly considered Stribeck friction models [27–
29] and hence the results do not correspond fully to practical
situations. In this paper, we consider a friction model which is a
slight modification of a widely used dynamic friction model (the
LuGre model) proposed by Canudas de Wit et al. [22] which can
describe the hysteretic effects of friction. Numerical studies show
that the bifurcation of the uncontrolled friction-induced system with
the LuGre friction model is subcritical in nature [28,30]. The
subcritical bifurcation is also sometimes called as hard or dangerous
in the engineering literature due to the fact that the stable steady-
state near the stability boundary may become unstable due to an
unwanted fluctuation of a system parameter resulting in a large
amplitude vibration. The supercritical bifurcation is known as soft or
safe in a sense that the steady-state is globally stable in the linearly
stable region and yields small amplitude vibrations in the unstable
region near the stability boundary preventing detrimental damage to
the structure. Naturally, supercritical bifurcation is more preferable
than the subcritical bifurcation and hence, we also explore control-
lers which can change the nature of bifurcation to supercritical in this
paper as in [28].

We note here that most studies related to friction-induced
vibrations consider a mass on a moving belt model or a system
similar to this model leading to a single-degree-of-freedom (SDOF)
system. Such a model has been used extensively for the study of
friction-induced vibrations due to the drooping friction characteris-
tics [9–11] as well as to develop feedback laws to control such
vibrations [10,27–35]. There are, however, some researchers who
have also considered a two-degree-of-freedom mass on a moving
belt model [11,36,37] to study chaotic motions in frictional systems.
For simplicity of analysis, we consider a single degree-of-freedom
(SDOF) spring–mass–damper system on a moving belt. However, the
complexity of the friction force has been retained and the friction
model includes hysteresis observed in experiments [18–20].

Researchers have adopted different control strategies (both
passive and active) to attenuate or completely quench friction-
induced vibrations [10,27–35]. An efficient way to actively control
these vibrations is to use time-delayed controllers [27–29,34,35].
A time-delayed controller needs only a position feedback to
completely control friction-induced vibrations as opposed to a
traditional PD controller which also requires a derivative compo-
nent. In this paper, we use linear time-delayed position feedback
to quench friction-induced vibrations which also enables us to
control the nature of the bifurcation. The control force has the
same form as discussed in [27–29,35] and is applied in a direction
normal to the friction force. We call this control force as the
‘normal control force’ whose ability to change the nature of the
bifurcation comes from the fact that the controller combines with
the inherent nonlinearities of the friction force. Preliminary
numerical results corresponding to this study were reported in
[28,30]. The analysis presented here extends it by obtaining the
equations governing the amplitudes of the vibrations using the
method of multiple scales which helps in identifying the set of
control parameters corresponding to supercritical bifurcations.

The rest of the paper is organised as follows. The mathematical
model of the friction-induced system with the time-delayed
controller applied normal to the friction force is introduced in

Section 2. We perform the linear stability analysis in Section 3 to
obtain the stability boundaries separating the linearly stable and
unstable equilibria. Non-linear analysis using the method of
multiple scales (MMS) is performed in Section 4 to obtain
analytical expressions determining the influence of the control
parameters on the nature of the bifurcation. Various results are
discussed in Section 5. Finally, some conclusions are drawn in
Section 6.

2. The mathematical model with a dynamic (LuGre) friction
model

A very simple model for the study of friction-induced vibra-
tions is a SDOF spring–mass–damper system with the oscillator
mass in frictional contact with a belt moving with a constant
velocity. We consider this model with a control force applied along
the normal to the contacting surfaces. The physical model is
shown schematically in Fig. 1 in which Nn

0 is the normal load
(including the weight Mg of the oscillator block) in the absence of
control force and Fn

c is the control force.
The equation governing the motion of the oscillator is given by

M €XþC _XþKX ¼ ðNn

0þFn

c Þf ðVrÞ; ð1Þ
where f ðVrÞ is the friction function (friction force per unit of
normal load), Vr ¼ Vb� _X is the relative velocity and Vb is the belt
velocity. The over-dots in Eq. (1) represent derivative with respect
to time t. The friction function depends on other internal variables
for the dynamic models (to capture the hysteretic behavior) to be
considered in this paper and that dependence has not been
explicitly written above as these internal variables have not been
introduced yet. We consider control force of the following form
[27–29,35]:

Fn

c ¼ Kn

c ðXðt�TnÞ�XðtÞÞ; ð2Þ
where Kn

c is the control gain and Tn is the time-delay. We obtain
the non-dimensional equation of motion as

x0 þ2ξx0 þx¼ ðN0þKcðxðτ�TÞ�xðτÞÞÞf ðvrÞ: ð3Þ
We use the characteristic time scale fixed by ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
K=M

p
and the

characteristic length fixed by x0 ¼ g=ω2
0 for the non-

dimensionalisation. The primes in Eq. (3) denote derivative with
respect to the non-dimensional time τ¼ω0t. The other non-
dimensional quantities are

x¼ X
x0
; vb ¼

Vb

ω0x0
; vr ¼ vb�x0; ξ¼ C

2Mω0
;

N0 ¼
Nn

0

Mω2
0x0

; Kc ¼ Kn

c

Mω2
0

; T ¼ ω0T
n:

The LuGre friction model [22] is used to represent the friction
function f ðvrÞ which is one of the most widely used dynamic
friction models to describe the hysteretic effects of friction. In
these dynamic models, the friction force does not depend only on
the relative velocity but also on some new state variable(s) (often
called the internal variable(s)) whose evolution is described by

X(t) * *
c0N +F

K

C

bV

M

Fig. 1. Damped harmonic oscillator on a moving belt as a model for friction-driven
vibrations with normal control force.
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