Accepted Manuscript

Direct photodissociation of toluene molecules to photoluminescent carbon dots under pulsed laser irradiation

Zhifeng Zhu, Shengda Wang, Yajing Chang, Dabin Yu, Yang Jiang

PII: S0008-6223(16)30317-7

DOI: 10.1016/j.carbon.2016.04.047

Reference: CARBON 10928

To appear in: Carbon

Received Date: 15 February 2016

Revised Date: 2 April 2016
Accepted Date: 19 April 2016

Please cite this article as: Z. Zhu, S. Wang, Y. Chang, D. Yu, Y. Jiang, Direct photodissociation of toluene molecules to photoluminescent carbon dots under pulsed laser irradiation, *Carbon* (2016), doi: 10.1016/j.carbon.2016.04.047.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Direct Photodissociation of toluene molecules to Photoluminescent

Carbon Dots under Pulsed Laser irradiation

Zhifeng Zhu a,b, Shengda Wang a, Yajing Chang Dabin Yu b,* and Yang Jiang a,b,*

^a School of Materials Science and Engineering, Hefei University of Technology,

Anhui 230009, China.

^b State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering

Institute, Anhui 230037, China.

Abstract:

Herein, we report a facile method of direct photodissociation of toluene molecules to

photoluminescent carbon dots (CDs) under pulsed laser irradiation in the absence of

surfactants or catalysts. The as-synthesized CDs with diameters 1.3-4.0 nm present

regular emission peaks and the crystallographic structure of these species has been

identified as graphite 2H from the analysis of high resolution transmission electron

microscope (HRTEM) images, X-ray photoelectron spectroscopy (XPS) and Raman

spectrum. In addition, First-Principle calculations were performed to discuss the

photon-induced excitation in the photodissociation processe. The results demonstrate

that electrons can be transited from Highest Occupied Molecular Orbital (HOMO) to

Lowest Unoccupied Molecular Orbital (LUMO) in toluene molecule by 248 nm

single photon excitation processe and the Stark effect plays a crucial role in the

photodissociation processe. These CDs exhibit excellent stable emission due to the

stability of crystal structure, which could be considered for promising luminescent

applications.

1. Introduction

Carbon nanomaterials have a broad range of applications in energy, environmental

and biomedical fields [1-6]. In particular, photoluminescent carbon dots (CDs)

including graphene dots (GDs) have received considerable interests due to their

Download English Version:

https://daneshyari.com/en/article/7849733

Download Persian Version:

https://daneshyari.com/article/7849733

<u>Daneshyari.com</u>