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a b s t r a c t

An inverse problem of identification of the elastoplastic properties of power hardening engineering

materials from limited spherical indentation measurements is studied. A fast algorithm for reconstruc-

tion of the Ramberg–Osgood curve si ¼ s0ðei=e0Þ
k, with the strain hardening exponent kAð0;1Þ, is

proposed. The main distinguished feature of this algorithm is that the only two output measured data

/ai ,PiS, i¼0,1, i.e. discrete values of the penetration depth (ai) and the loading force (Pi), are required

for the reconstruction of the unknown Ramberg–Osgood curve. The first measured data /a0 ,P0S
corresponds to pure elastic deformations, and the second one to one of the plastic deformations. The

second advantage of the proposed algorithm is its well-conditionedness, different from parametrization

algorithms proposed in previous studies. Numerical examples related to applicability and enough

accuracy of the proposed approach are presented for the noise free and noisy data.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Spherical indentation testing is one of the extensively used
experimental methods to measure material properties from the
penetration depth and the loading force curve P ¼PðaÞ (see
[1–3,5,6,8–11,13,14,16–18] and references therein). The idea of
relating the mechanical properties of deformable materials to
their hardness was first given by Ishlinski [10]. By using the
method of characteristics for hyperbolic equations, he has found a
relationship between the Brinell hardness HB ¼P=ð2pRaÞ, and the
yield stress: s0 ¼ 0:383HB, for a spherically symmetric indenta-
tion hardness test (here and below P40 is the measured loading
force, R40 is the radius of a spherical indenter and a40 is the
indentation depth). However, in this model the curvature of a
contactable surface was ignored, and the problem was considered
for a perfectly plastic material. Subsequently, the relationship
between hardness as measured data and stress–strain behavior in
the regime of ‘‘large’’ indents have been established in [11].

During the last decade, most researches were devoted to the
modeling of the spherical indentation process and its numerical
simulation. Although it is difficult to give a comprehensive
literature survey on this subject, the interested reader can refer
to some recent works (see [1–3,8,16–18], and references therein)
for numerical simulation and semi-analytical methods. The first
important issue here is to construct an appropriate and simple

computational inversion method which then can be used in
engineering practice. The second important point is that the
physical model chosen for simulation of an experiment needs to
be adequate from the material behavior point of view. Reformu-
lating gradient plasticity theory, Fleck and Hutchinson [4] pro-
posed generalization of the classical J2 flow and deformation
theories. Results presented in [4] show that, when stressing is
nearly proportional (simple loading), as the case of spherical
indentation is, the new plasticity models predict qualitatively
similar behavior to the J2 flow and deformation theories. This, in
particular, means that J2-deformation theory of plasticity can be
used as a basic physical model in modeling and simulation of a
spherical indentation process. On the other hand, as it is shown in
the fundamental work of Liu et al. [16], elastoplastic properties of
an engineering materials cannot be defined uniquely by using an
indentation test, even in within the framework of a simplest
physical/mathematical model, in particular, within the J2-defor-
mation theory of plasticity. The main reason of this phenomenon
is the ill-posedness of the inverse problem of determining the
unknown stress–strain curve si ¼ sðeiÞ from the penetration
depth–loading force curve P ¼PðaÞ. The mathematical model of
this inverse problem has been first proposed in [5]. Note that in
view of inverse problems theory for PDEs, non-uniqueness of a
solution of an inverse problem is a typical situation in all
coefficient identification problems due to their severely ill-posed-
ness (see [8,16,17]).

In engineering literature, identification problems related to
spherical indentation and nanoindentation tests have also been
analyzed in [1–3,13,14,16–18]. Thus, for near linear hardening
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materials numerical relationships between material properties
and indentation responses have been obtained in [17,18].
An utilization of the connection between the indentation curve
P ¼PðaÞ and other mechanical properties, in particular Brinell
Hardness, was given in [10–12]. The main question in all types of
identification problems related to determination of elastoplastic
properties is the non-uniqueness of a solution. From engineering
point of view, the issue of ill-posedness has been analyzed in
[13–16]. It was shown in [14,16,17] that indentation test cannot
probe material plastic behavior effectively, beyond a critical
strain, and hence a solution of the inverse problem of determining
the unknown stress–strain curve si ¼ sðeiÞ from the penetration
depth–loading force curve P ¼PðaÞ is non-unique.

Originally used for hardness measurement, nanoindentation
tests are also widely used nowadays for the calibration of various
constitutive models. Most often, a nanoindentation curve (load
versus penetration) is used to identify the isotropic material
parameters with the help of an analytical formula. On the other
hand, an inverse analysis of the nanoindentation test can be
combined with the additional measured data like residual defor-
mation (imprint) to identify anisotropic constitutive models [2,17].

In this paper, the inverse problem of identification elastoplas-
tic properties of power hardening engineering materials from
limited spherical indentation measurements is studied. The
indentation is assumed to be frictionless, without unloading.
Within the J2-deformation theory of plasticity, a fast algorithm
for reconstruction of the Ramberg–Osgood curve si ¼ s0ðei=e0Þ

k

with the strain hardening exponent kAð0;1Þ is proposed. Based
on computational analysis of the considered inverse problem,
limits of ill-posedness are described. In particular, it is shown that
even for the considered simple physical model, the non-unique-
ness of solution cannot be removed completely. Presented numer-
ical results show that the proposed fast algorithm permits one to
obtain a unique and stable reconstruction of the Ramberg–
Osgood curve by using only two measured discrete indentation
data /a0,P0S and /a1,P1S.

The paper is organized as follows. The formulation of the
inverse coefficient problem for uniaxial quasi-static indentation
testing is given in Section 2. The finite element discretization of
the non-linear direct problem and its linearization are proposed
in Section 3. Then the remeshing algorithm is described for
generation of synthetic output data for the inverse problem.
The fast inversion algorithm and its comparison with the para-
metrization algorithm are discussed in Section 4. Computational
results related to the reconstruction of the Ramberg–Osgood
curves from noise free and noisy data are demonstrated in the
final Section 5. Appendix A contains derivation of the equilibrium
(Lamé) equations corresponding to axisymmetric case from the
general equations. In Appendix B an effect of the triangle element
geometries on approximation in the proposed remeshing process
is discussed.

2. Mathematical model of uniaxial quasi-static indentation
and the inverse problem

Let the rigid spherical indenter be loaded with a loading force
P, into an axially symmetric homogeneous body, defined to be a
sample, occupying the domain O� ½0;2p�, O�R2, in the negative
y-axis direction, as shown in Fig. 1. The uniaxial quasi-static
indentation process is simulated by monotonically increasing
value a40 of the indentation depth. It is assumed that the
indentation process is carried out without unloading, moment
and friction. For a given value aAð0,anÞ of the indentation depth
the quasi-static axisymmetric indentation process can be mod-
eled by the following contact problem.

Find the displacement field uðx,yÞ ¼ ðu1ðx,yÞ,u2ðx,yÞÞ from the

solution of the unilateral problem
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s11ðuÞ ¼ 0, s12ðuÞ ¼ 0, ðx,yÞAGs;

u1ð0,yÞ ¼ 0, s12ðuÞ ¼ 0, ðx,yÞAG1;

s12ðuÞ ¼ 0, u2ðx,0Þ ¼ 0, ðx,yÞAGu:
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u2ðx,lyÞr�aþfðxÞ, s22ðuÞr0, ½u2ðx,yÞþa�fðxÞ�s22ðuÞ ¼ 0,

s12ðuÞ ¼ 0, ðx,yÞAG0:

(

ð3Þ

Here O¼ fðx,yÞAR2 : 0oxo lx,0oyo lyg, lx,ly40, Gs ¼ fðlx,yÞ :

0oyo lyg,G0 ¼ fðx,lyÞ : 0rxr lxg, G1 ¼ fð0,yÞ : 0oyo lyg, Gu ¼

fðx,0Þ : 0rxr lxg, and fðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

0�x2
q

is the surface of the sphe-

rical indenter, with the radius r040.
Appendix A outlines how the system of Eq. (1) can be derived

from the general equation.
The relationship between the components of strain and stress

tensors is as follows [12,19,21]:

siiðuÞ ¼
~lyðuÞþ2 ~meiiðuÞ, i¼ 1;2,3; s12ðuÞ ¼ 2 ~me12ðuÞ, ð4Þ

where e11ðuÞ ¼ @u1=@x, e22ðuÞ ¼ @u2=@y, e33ðuÞ ¼ u1=x, e12ðuÞ ¼ 0:5
ð@u1=@yþ@u2=@xÞ, yðuÞ ¼ e11ðuÞþe22ðuÞþe33ðuÞ the components of
deformation, and

~l ¼ lþ2mgðe2
i Þ=3, ~m ¼ mð1�gðe2

i ÞÞ,

l¼ En=½ð1þnÞð1�2nÞ�, m¼ E=½2ð1þnÞ�: ð5Þ

Here eiðuÞ ¼ ð2=3Þf
P3

i,j ¼ 1;3½eiiðuÞ�ejjðuÞ�
2þ3e2

12ðuÞg
1=2 is the strain

intensity, l,m40 are Lamé constants, E40 is an elasticity
modulus, n¼ 0:3 is the Poisson’s coefficient and G¼ m is the
modulus of rigidity.

The contact problem (1)–(5) for the non-linear system of Lamé
equations represents an equilibrium state of an axially symmetric
body under the loading force given by the penetration depth
a40, in the cylindrical coordinates ðr,zÞ :¼ ðx,yÞ.

It is assumed that an axisymmetric sample lies on a substrate
without friction, as the last condition in (2) shows. Further, the
symmetry of the sample implies the second boundary condition
in (2). On the part of the boundary Gs, beyond the contact, the
‘‘free boundary conditions’’ in (2) are given. The contact condi-
tions (3), in the form of inequalities, mean that the contact
zone GcðaÞ ¼ fðx,lyÞAG0 : u2ðx,lyÞ ¼ �aþfðxÞ,xA ð0,acðaÞÞg,acðaÞ :¼
@GcðaÞ, depending on the value a40 of the indentation depth is
also unknown and needs to be defined.
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Fig. 1. Geometry of the spherical indentation.
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