
On rate-dependent dissipation effects in electro-elasticity

Prashant Saxena, Duc Khoi Vu, Paul Steinmann n

Chair of Applied Mechanics, University of Erlangen–Nuremberg, Egerlandstraße 5, Erlangen, Germany

a r t i c l e i n f o

Article history:
Received 26 July 2013
Received in revised form
5 December 2013
Accepted 4 February 2014
Available online 11 February 2014

Keywords:
Non-linear electroelasticity
Rate dependence
Viscoelasticity
Electromechanical coupling

a b s t r a c t

This paper deals with the mathematical modelling of large strain electro-viscoelastic deformations in
electro-active polymers. Energy dissipation is assumed to occur due to mechanical viscoelasticity of the
polymer as well as due to time-dependent effective polarisation of the material. Additive decomposition
of the electric field E¼ EeþEv and multiplicative decomposition of the deformation gradient F¼ FeFv are
proposed to model the internal dissipation mechanisms. The theory is illustrated with some numerical
examples in the end.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, the theory and the numerical
simulation of the coupled electro-mechanical problem have been
interesting subjects of research, cf. Pao [1] and Eringen and Maugin
[2]. However, with the invention of the so-called electro-active
polymers (EAPs) capable of exhibiting large deformations in
response to the application of electric fields, several new chal-
lenges appear and need to be addressed. Open problems remain
both in the understanding of electro-mechanical coupling in soft
matter and in simulating the behaviour of electro-sensitive bodies
under the influence of an electric field.

EAPs can be used as alternatives to materials traditionally used to
develop actuators like piezoelectric ceramics, shape memory metals
and electro-rheological fluids, cf. O'Halloran et al. [3]. Potential
applications of EAPs in developing artificial muscles and robotic
systems include robot manipulators [4], soft pumps [5], loud-
speakers [6], portable force feed-back devices [7], haptic interfaces
[8], electric generators for energy harvesting [9–11], transport
vehicles [12,13], and sensing equipment [14–17], among others.

Efforts were made in the past to model and simulate the
behaviour of EAPs using the theory of non-linear elasticity and
non-linear visco-elasticity, for example, by Kofod [18], Sommer-
Larsen et al. [19], Goulbourne et al. [20], Yang et al. [21,22], and
Rosset et al. [23]. However, the papers mentioned above assume
that the material electric properties are independent of deformation.

Note that because large strain occurs during the deformation
process, the non-linearity of the material electric properties must
be accounted for. In order to overcome this shortcoming, some
related boundary-value problems involving finite deformation
were analyzed by taking into account the non-linearity of the
electric polarisation, for example, in the works of Voltairas et al.
[24], Dorfmann and Ogden [25], Müller et al. [26], Zwecker et al.
[27], and Vertechy et al. [28]. The effect of viscosity in the
modeling of EAPs was examined recently by Ask et al. [29,30]
and Büschel et al. [31].

A basic assumption in the modelling of EAPs in the papers
mentioned above has been an instantaneous or ‘elastic’ response
of the material to an applied electric field. This, however, may
not be the case in all the electroactive polymers and we aim at
modelling this phenomena in this research. We work under a
more general case where it is assumed that on the application
of an electric field, the overall macroscopic polarisation of the
material is time-dependent. Thus, in addition to the mechanical
viscoelasticity of the polymeric matrix, an additional energy-
dissipating mechanism is considered on account of the evolution
of the electric polarisation with time.

Among the several approaches towards a phenomenological
theory of mechanical viscoelasticity, the literature is usually
divided on account of the nature of internal variable used to
quantify dissipation. The internal variable can be assumed to be of
stress-type, as proposed by Simo [32] and Lion [33], or it can be
strain-type, as used by Lubliner [34], Reese and Govindjee [35] and
Huber and Tsakmakis [36]. In the latter approach, which has been
also followed in this paper, the deformation gradient is decom-
posed into elastic and inelastic parts (F¼ FeFv) where the inelastic
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part is determined from a differential type flow rule. In addition to
the mechanical viscoelastic dissipation, we also model electric
dissipation by considering a similar decomposition of our inde-
pendent variable (electric field in this case) into ‘elastic’ and
‘viscous’ parts as E¼ EeþEv. This follows a similar approach by
Saxena et al. [37] for the magnetic counterpart of this problem.
The energy and momentum balance laws of electroelasticity are
derived from the fundamental equations of electrostatics follow-
ing the work of McMeeking and Landis [38].

This paper is organised as follows. The theory of rate-
dependent electroelastic deformations is presented in Section 2.
Starting with the basic principles of electrostatics and continuum
mechanics (as detailed in the Appendix), we obtain the energy
and momentum balance laws in the case of electroelasticity. The
deformation gradient and the electric field are decomposed
into equilibrium and non-equilibrium parts (F¼ FeFv; E¼ EeþEv).
Using the laws of thermodynamics and a form of the free energy
density function, constitutive equations are derived along with the
conditions to be satisfied by the evolution equations of the non-
equilibrium quantities.

For the purpose of obtaining numerical solutions later, the
energy density function and the evolution equations for the non-
equilibrium quantities are specialised to specific forms. Several
electro-visco-elastic coupling parameters are introduced in this
step and we define thermodynamically consistent and physically
reasonable evolution laws for the internal variables. In Section 3,
numerical solutions are obtained corresponding to five different
types of (mechanical and electric) loading conditions. The effects
of the underlying deformation, strain rate, electric field, and
electric field rate are studied on the evolution of the resulting
stress and the dielectric displacement. The results, presented
graphically, show a strong coupling between strain and electric
field, as well as the strong dependence of the response on electro-
viscoelastic coupling parameters thus making the model amenable
to fitting with experimental data, as and when it becomes
available in future.

2. Theory

We consider an electroelastic material that, when undeformed,
unstressed and in the absence of electric fields, occupies the
material configuration B0 with boundary ∂B0. It is then subjected
to a static deformation due to the combined action of an electric
field, mechanical surface tractions and body forces. The spatial
configuration at time t is denoted by Bt with a boundary ∂Bt . The
two configurations are related by a deformation function χ which
maps every point XAB0 to a point x¼ χ ðX; tÞABt . The deforma-
tion gradient is defined as F¼Grad χ , where Grad is the gradient
operator with respect to X. Its determinant is given by J ¼ det F.

2.1. Balance laws and boundary conditions

2.1.1. Equations of electrostatics
Let q be the electric charge density per unit volume in Bt , e be

the spatial electric field vector, d be the spatial electric displace-
ment vector, and p be the spatial polarisation vector. The balance
equations for the electric quantities are given by a simplified form
of the two Maxwell's equations as

curl e¼ 0; div d¼ q; ð1Þ
where the electric vectors are related by the constitutive law

d¼ ε0eþp; ð2Þ
and curl and div denote the corresponding differentiation with
respect to the position vectors x in the spatial configuration Bt .

We note that the above equations can also be written in the
material configuration B0 by employing the following transformations:

E¼ Fte; D¼ JF�1d; P¼ JF�1p; ð3Þ
thus giving

Curl E¼ 0; Div D¼ Jq; D¼ ε0JC
�1

EþP; ð4Þ
such that Curl and Div denote the corresponding differentiation
operators with respect to the position vectors X in B0 and C¼ FtF
is the right Cauchy–Green deformation tensor.

Since curl of a gradient vanishes, the electric field vector can be
written as the gradient of a scalar potential from Eq. (1)1 as

e¼ �grad ϕ: ð5Þ
At an interface or a boundary, the electric vectors must satisfy

the conditions

n� 1eU¼ 0; n � 1dU¼ q̂; ð6Þ
where q̂ is the surface charge density, n is the unit outward normal
to the surface and 1�U represents the difference ð�out��inÞ.

2.1.2. Linear and angular momentum balance
The balance of linear momentum in the configuration Bt is

given in terms of the total Cauchy stress tensor as

div rtotþfm ¼ ρa: ð7Þ
Here rtot is the total Cauchy stress tensor that takes both
mechanical and electric effects into account, fm is the purely mech-
anical body force, ρ is the mass density, a is the acceleration, and
the divergence operator is taken to operate on the first index
of a second order tensor. We refer to Appendix A for a detailed
derivation of the balance equations in the context of electroelasticity.

The above equation can be written in referential form using the
total Piola–Kirchhoff stress Stot ¼ JF�1rtotF� t as

DivðStotFtÞþfM ¼ ρra; ð8Þ
with ρr ¼ Jρ being the referential mass density and fM ¼ Jfm being
the referential body force. Note that the tensor S¼ JF�1rF� t is
sometimes also referred to as the ‘second’ Piola–Kirchhoff stress.

The principle of balance of angular momentum renders the
Cauchy and the Piola–Kirchhoff stress tensors symmetric

ðrtotÞt ¼ rtot; ðStotÞt ¼ Stot: ð9Þ
The corresponding boundary conditions are given by Eqs. (A.5)

and (A.6).

2.1.3. Internal dissipation
Very often, the EAPs are synthesised from a rubber like

polymer. The polymeric rubber matrix is viscoelastic in nature
which leads to energy dissipation on a mechanical deformation. In
addition to this, energy dissipation can also occur due to a time-
dependent polarisation of the material on application of an electric
field. We consider the possibility that on a sudden application of
an electric field (or a potential difference), the electric displacementD,
the polarisation P, and the resulting electric contribution to stress
generated in the material evolve with time to reach an equilibrium
value. Thus, the two effects need to be modelled appropriately.

To take into account mechanical viscous effects, we assume the
existence of an intermediate configuration Bi that is, in general,
incompatible. The tangent spaces of B0 and Bi are related by a
second order tensor Fv that quantifies viscous motion while the
tangent spaces of Bi and Bt are related by a second order tensor Fe
that quantifies elastic distortion. The configuration Bi is in parallel
to the energy-conserving electroelastic deformation from B0 to Bt .
This motivates the decomposition of the deformation gradient into
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