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a b s t r a c t

The axial compressive failure of aligned fiber composites triggered by kink band instabilities is the topic
of investigation herein. Particular emphasis is put on the accurate prediction of the post-failure regime,
where fiber composites are known to exhibit substantial post-failure strength. In this regard, a previous
analytical model, based on geometric relationships and energy principles, is enhanced by consistently
taking into account material non-linearities. Therefore, a non-linear constitutive law is introduced herein
based on a newly developed exponential formulation. This non-linear constitutive law is subsequently
implemented into the stress–strain response in interlaminar shearing as well as the compression
response. The model enhancements are validated against published experimental data yielding excellent
comparisons. Furthermore, the relevance of modeling non-linear material behavior in interlaminar
dilation and bending is assessed using a bilinear constitutive law. However, implementing non-linear
material behavior does not yield any improvements and can therefore be neglected.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Owing to their advantageous stiffness and strength-to-weight
ratio, fiber composites are increasingly popular for structural
applications. Thus, in-depth knowledge about the mechanical
properties and failure mechanisms of fiber composites is required.
In particular, the longitudinal compressive failure has been subject
to extensive research, e.g., [1–8]. The prevailing opinion is that the
compressive failure is initiated by local shear buckling of the fibers
also referred to as kinking. This consequently results in a simulta-
neous transverse deformation of several layers of the composite,
forming a so-called kink band. An example of a distinct kink band
observed by Vogler and Kyriakides [9] is shown in Fig. 1.

Moreover, the compressive failure of fiber composites is
marked by a significant load drop which could potentially lead
to catastrophic consequences. However, in several experiments a
subsequent load stabilization in the post-failure regime was
observed [3,5,10,11]. The load stabilization after compressive fail-
ure was likewise confirmed by analytical and numerical kink
banding models [3,4,7,8,12].

The accuracy of kink banding models is highly sensitive to the
description of the composite's shear response. Early models like

the Rosen model [1] assumed linear elastic matrix behavior
leading to a substantial overestimation of the compressive failure.
Subsequent models by Argon [2] or Budiansky [13] considered
non-linear plastic shear behavior. Thereby, the accuracy was
significantly improved. Thereafter, the description of non-linear
material behavior became more sophisticated. Budiansky and
Fleck [14] regarded strain hardening in the shear response by
deriving a flow-theory version of plasticity. Likewise, Fleck et al.
[4,15] addressed non-linear shearing by using the Ramberg–
Osgood description [16]. Similarly, non-linear material behavior
plays a decisive role in numerical modeling of kink banding.
Vogler et al. [17], for example, compared different material models
which particularly affected the response upon initiation of the
kink band.

The work presented in this paper mainly focuses on the
accurate, analytical prediction of the postbuckling regime with
particular attention on the stabilization pressure. Thus, an analy-
tical kink banding model by Wadee et al. [18] is adapted. The
aforementioned model is entirely found on geometric relations
and energy principles and is initially reviewed herein. As men-
tioned before, non-linear material behavior, especially in the shear
response, significantly influences the mechanical response due to
kink banding. For that reason, a constitutive law is developed
herein introducing an exponential expression in order to describe
the non-linear material behavior of the compound. Thereafter, it is
implemented into the model by Wadee et al. [18] in Section 4.
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Moreover, a simplified bilinear constitutive law is utilized to assess
the relevance of material non-linearities in bending and inter-
laminar dilation/compression in Section 5. Results derived using
these novel model extensions are validated against experimental
data by Kyriakides et al. [3] and significant improvements can be
achieved.

2. Review of the precursor model

The precursor model developed by Wadee et al. [18] is purely
based on geometric and energy principles and is shown in Fig. 2.
The laminated fiber composite of n unidirectional layers is reduced
to two adjacent layers within a kink band and is axially com-
pressed by a force nP. The contribution of the remote layers which
are unaffected by the kink band is accounted for by linear springs
with stiffness k. The transversely isotropic layers are considered
homogenous, i.e., the heterogeneous nature of the microstructure
is neglected. The shaded region in Fig. 2 illustrates the inter-
laminar region. The precursor model assumes the laminae to
be laterally incompressible and thus the interlaminar region is
subject to lateral (orthogonal to the layers) δI and shear δII
displacement. The interlaminar lateral and shear displacements
correspond to the forces F I and F II, respectively. The rotation of the
kinked layers is denoted by α. The bending resistance of the
layers is addressed by rotational springs with stiffness c. The kink
band width is denoted by b, whereas t stands for a single layer's
thickness. Furthermore, the kink band is inclined with respect to
the fiber direction by β, which is, however, assumed to be constant
during deformation.

The interlaminar displacements can be deduced from geo-
metric relations shown in the enlarged illustration in Fig. 2, thus

δIðαÞ ¼ t
cos ðα�βÞ
cos ðβÞ �1

� �
; ð1Þ

δIIðαÞ ¼
t

cos ðβÞ½ sin ðα�βÞþ sin ðβÞ�: ð2Þ

Consequently, the shear angle γ12 reads as

γ12ðαÞ ¼ arctan
δII
δIþt

� �

¼ arctan
sin ðα�βÞþ sin ðβÞ

cos ðα�βÞ

� �
: ð3Þ

The equilibrium equations are obtained utilizing the principle
of minimum total potential energy. The total potential energy V is
the sum of the respective strain energies minus the work done of

the external force P along the layer's total end-shortening in
longitudinal direction Δ. The total strain energy comprises con-
tributions from interlaminar dilation/compression UD, interlami-
nar shearing US, bending Ub and longitudinal compression outside
the kink band Um. Thus, the total potential energy can be derived
as follows:

V ¼UDþUSþUbþUm�PΔ: ð4Þ
The energies UD and US stored in the interlaminar region are
derived by integrating the respective forces F I or F II along the
displacement path given by δI or δII, respectively (cf. Fig. 2). The
obtained expressions are stated in Eq. (3.2) as well as Eqs. (3.6)
and (3.8) in [18]. Note that the precursor model assumes a bilinear
material response in interlaminar shearing, whereas the remain-
ing energy contributions UD, Ub and Um are derived according to a
linear constitutive law only.

Referring to Fig. 2, the bending energy Ub stored in a kinked
layer is represented by two rotational springs of stiffness c, thus
Ub ¼ cα2. An approximation of c is given by Eqs. (3)–(13) in [18].
The axial compression energy Um outside the kink band is
addressed by in-line springs with stiffness k. While δa is the
end-shortening, i.e., the displacement of the in-line springs, the
contribution can be derived as Um ¼ kδ2a=2. The spring's stiffness is
defined as k¼ E11dt=L, where L and d are the composite's length
and breadth, respectively. E11 is the axial Young's modulus of the
composite and t is the layer's thickness as stated before.

The equilibrium equations follow from the condition of sta-
tionary total potential energy (cf. Eq. (4)). Thus, the derivatives of V
with respect to the generalized coordinates are to be obtained
simultaneously. Herein, these are the end-shortening δa, the kink
band angle α and the kink band width b. Furthermore, the
equilibrium equations are non-dimensionalized (denoted by (~))
by dividing through kt2, yielding

~p ¼ ~δ; ð5Þ

~p ¼ ~kIIαþ ~k II Jαþ
2 ~Dα

~b
2
sin ðαÞ

; ð6Þ

~p ¼ ~kIIbþ ~kII Jb�
~Dα2

~b
2ð1� cos ðαÞÞ

; ð7Þ

where ~p is the non-dimensional compression stress caused by the
force P¼pdt, hence ~p ¼ pd=k. The non-dimensional values ~δ , ~k I, ~kII

and ~D are as follows:

~δ ¼ δa
t
; ~D ¼ L

12t
; ~kI ¼

E33L
E11t

; ~k II ¼
G12L
E11t

; ð8Þ

where E33 ¼ E22 is the lateral (or out-of-plane) Young's modulus
and G12 is the shear modulus of one transversally isotropic uni-
directional composite layer. Iα , Ib, Jα and Jb are non-dimensional

Fig. 1. Photograph of a typical kink band in a fiber composite plate after
compressive failure by Vogler and Kyriakides [9].

Fig. 2. Kink banding model by Wadee et al. [18].
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